IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v522y2015i7557d10.1038_nature14471.html
   My bibliography  Save this article

Atomic structure of the APC/C and its mechanism of protein ubiquitination

Author

Listed:
  • Leifu Chang

    (MRC Laboratory of Molecular Biology)

  • Ziguo Zhang

    (MRC Laboratory of Molecular Biology)

  • Jing Yang

    (MRC Laboratory of Molecular Biology)

  • Stephen H. McLaughlin

    (MRC Laboratory of Molecular Biology)

  • David Barford

    (MRC Laboratory of Molecular Biology)

Abstract

The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex and interphase early mitotic inhibitor 1 (Emi1) ensures the correct order and timing of distinct cell-cycle transitions. Here we use cryo-electron microscopy to determine atomic structures of APC/C–coactivator complexes with either Emi1 or a UbcH10–ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10–ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of future experiments to investigate APC/C functions in vivo.

Suggested Citation

  • Leifu Chang & Ziguo Zhang & Jing Yang & Stephen H. McLaughlin & David Barford, 2015. "Atomic structure of the APC/C and its mechanism of protein ubiquitination," Nature, Nature, vol. 522(7557), pages 450-454, June.
  • Handle: RePEc:nat:nature:v:522:y:2015:i:7557:d:10.1038_nature14471
    DOI: 10.1038/nature14471
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14471
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Bae Lee & Luciano Garofano & Aram Ko & Fulvio D’Angelo & Brulinda Frangaj & Danika Sommer & Qiwen Gan & KyeongJin Kim & Timothy Cardozo & Antonio Iavarone & Anna Lasorella, 2022. "Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Shizhong Ke & Fabin Dang & Lin Wang & Jia-Yun Chen & Mandar T. Naik & Wenxue Li & Abhishek Thavamani & Nami Kim & Nandita M. Naik & Huaxiu Sui & Wei Tang & Chenxi Qiu & Kazuhiro Koikawa & Felipe Batal, 2024. "Reciprocal antagonism of PIN1-APC/CCDH1 governs mitotic protein stability and cell cycle entry," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:522:y:2015:i:7557:d:10.1038_nature14471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.