IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v521y2015i7550d10.1038_nature14173.html
   My bibliography  Save this article

Differential DNA mismatch repair underlies mutation rate variation across the human genome

Author

Listed:
  • Fran Supek

    (EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
    Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
    Rudjer Boskovic Institute, 10000 Zagreb, Croatia)

  • Ben Lehner

    (EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
    Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
    Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain)

Abstract

An analysis of how regional mutation rates vary across 652 tumours identifies variable DNA mismatch repair as the basis of the characteristic regional variation in mutation rates seen across the human genome; the results show that differential DNA repair, rather than differential mutation supply, is likely to be the primary cause of this variation.

Suggested Citation

  • Fran Supek & Ben Lehner, 2015. "Differential DNA mismatch repair underlies mutation rate variation across the human genome," Nature, Nature, vol. 521(7550), pages 81-84, May.
  • Handle: RePEc:nat:nature:v:521:y:2015:i:7550:d:10.1038_nature14173
    DOI: 10.1038/nature14173
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14173
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Gongwang Yu & Yao Liu & Zizhang Li & Shuyun Deng & Zhuoxing Wu & Xiaoyu Zhang & Wenbo Chen & Junnan Yang & Xiaoshu Chen & Jian-Rong Yang, 2023. "Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Kseniia Cheloshkina & Maria Poptsova, 2021. "Comprehensive analysis of cancer breakpoints reveals signatures of genetic and epigenetic contribution to cancer genome rearrangements," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-23, March.
    4. Miguel M. Álvarez & Josep Biayna & Fran Supek, 2022. "TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Mischan Vali-Pour & Solip Park & Jose Espinosa-Carrasco & Daniel Ortiz-Martínez & Ben Lehner & Fran Supek, 2022. "The impact of rare germline variants on human somatic mutation processes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Paola Cornejo-Páramo & Veronika Petrova & Xuan Zhang & Robert S. Young & Emily S. Wong, 2024. "Emergence of enhancers at late DNA replicating regions," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:521:y:2015:i:7550:d:10.1038_nature14173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.