IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v520y2015i7548d10.1038_nature14435.html
   My bibliography  Save this article

A new heart for a new head in vertebrate cardiopharyngeal evolution

Author

Listed:
  • Rui Diogo

    (Howard University College of Medicine)

  • Robert G. Kelly

    (Aix Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288)

  • Lionel Christiaen

    (Center for Developmental Genetics, New York University)

  • Michael Levine

    (University of California at Berkeley, California 94720, USA.)

  • Janine M. Ziermann

    (Howard University College of Medicine)

  • Julia L. Molnar

    (Howard University College of Medicine)

  • Drew M. Noden

    (College of Veterinary Medicine, Cornell University)

  • Eldad Tzahor

    (Weizmann Institute of Science)

Abstract

It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts — both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.

Suggested Citation

  • Rui Diogo & Robert G. Kelly & Lionel Christiaen & Michael Levine & Janine M. Ziermann & Julia L. Molnar & Drew M. Noden & Eldad Tzahor, 2015. "A new heart for a new head in vertebrate cardiopharyngeal evolution," Nature, Nature, vol. 520(7548), pages 466-473, April.
  • Handle: RePEc:nat:nature:v:520:y:2015:i:7548:d:10.1038_nature14435
    DOI: 10.1038/nature14435
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14435
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacob T. Gafranek & Enrico D’Aniello & Padmapriyadarshini Ravisankar & Kairavee Thakkar & Ronald J. Vagnozzi & Hee-Woong Lim & Nathan Salomonis & Joshua S. Waxman, 2023. "Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Brendan Evano & Diljeet Gill & Irene Hernando-Herraez & Glenda Comai & Thomas M Stubbs & Pierre-Henri Commere & Wolf Reik & Shahragim Tajbakhsh, 2020. "Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-21, October.
    3. Hiroko Nomaru & Yang Liu & Christopher De Bono & Dario Righelli & Andrea Cirino & Wei Wang & Hansoo Song & Silvia E. Racedo & Anelisa G. Dantas & Lu Zhang & Chen-Leng Cai & Claudia Angelini & Lionel C, 2021. "Single cell multi-omic analysis identifies a Tbx1-dependent multilineage primed population in murine cardiopharyngeal mesoderm," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:520:y:2015:i:7548:d:10.1038_nature14435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.