IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v520y2015i7548d10.1038_nature14131.html
   My bibliography  Save this article

Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells

Author

Listed:
  • Dagmar Walter

    (Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany)

  • Amelie Lier

    (Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany)

  • Anja Geiselhart

    (Deutsches Krebsforschungszentrum (DKFZ), Experimental Hematology Group, 69120 Heidelberg, Germany)

  • Frederic B. Thalheimer

    (Goethe University Frankfurt, 60595 Frankfurt am Main, Germany)

  • Sina Huntscha

    (Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany)

  • Mirko C. Sobotta

    (Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany)

  • Bettina Moehrle

    (Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany)

  • David Brocks

    (Deutsches Krebsforschungszentrum (DKFZ), Experimental Hematology Group, 69120 Heidelberg, Germany)

  • Irem Bayindir

    (Deutsches Krebsforschungszentrum (DKFZ), Experimental Hematology Group, 69120 Heidelberg, Germany)

  • Paul Kaschutnig

    (Deutsches Krebsforschungszentrum (DKFZ), Experimental Hematology Group, 69120 Heidelberg, Germany)

  • Katja Muedder

    (Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany)

  • Corinna Klein

    (Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany)

  • Anna Jauch

    (Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany)

  • Timm Schroeder

    (ETH Zurich, 4058 Basel, Switzerland)

  • Hartmut Geiger

    (Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
    Cincinnati Children’s Hospital Medical Center)

  • Tobias P. Dick

    (Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany)

  • Tim Holland-Letz

    (Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany)

  • Peter Schmezer

    (Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany)

  • Steven W. Lane

    (QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane 4006, Australia)

  • Michael A. Rieger

    (Goethe University Frankfurt, 60595 Frankfurt am Main, Germany)

  • Marieke A. G. Essers

    (Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany
    Deutsches Krebsforschungszentrum (DKFZ), Hematopoietic Stem Cells and Stress Group, 69120 Heidelberg, Germany)

  • David A. Williams

    (Boston Children’s Hospital
    Dana-Faber Cancer Institute
    Harvard Stem Cell Institute
    Harvard Medical School)

  • Andreas Trumpp

    (Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany
    Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany)

  • Michael D. Milsom

    (Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany
    Deutsches Krebsforschungszentrum (DKFZ), Experimental Hematology Group, 69120 Heidelberg, Germany)

Abstract

Here, DNA damage is shown to occur as a direct consequence of inducing haematopoietic stem cells to exit quiescence in response to conditions of stress; in mice with mutations modelling those seen in Fanconi anaemia, this leads to a complete collapse of the haematopoietic system.

Suggested Citation

  • Dagmar Walter & Amelie Lier & Anja Geiselhart & Frederic B. Thalheimer & Sina Huntscha & Mirko C. Sobotta & Bettina Moehrle & David Brocks & Irem Bayindir & Paul Kaschutnig & Katja Muedder & Corinna K, 2015. "Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells," Nature, Nature, vol. 520(7548), pages 549-552, April.
  • Handle: RePEc:nat:nature:v:520:y:2015:i:7548:d:10.1038_nature14131
    DOI: 10.1038/nature14131
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14131
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elliot H. Akama-Garren & Theo Broek & Lea Simoni & Carlos Castrillon & Cees E. Poel & Michael C. Carroll, 2021. "Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Kim Vanuytsel & Carlos Villacorta-Martin & Jonathan Lindstrom-Vautrin & Zhe Wang & Wilfredo F. Garcia-Beltran & Vladimir Vrbanac & Dylan Parsons & Evan C. Lam & Taylor M. Matte & Todd W. Dowrey & Sara, 2022. "Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Narasaiah Kovuru & Makiko Mochizuki-Kashio & Theresa Menna & Greer Jeffrey & Yuning Hong & Young me Yoon & Zhe Zhang & Peter Kurre, 2024. "Deregulated protein homeostasis constrains fetal hematopoietic stem cell pool expansion in Fanconi anemia," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Carla Umansky & Agustín E. Morellato & Matthias Rieckher & Marco A. Scheidegger & Manuela R. Martinefski & Gabriela A. Fernández & Oleg Pak & Ksenia Kolesnikova & Hernán Reingruber & Mariela Bollini &, 2022. "Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Jacqueline Feyen & Zhen Ping & Lanpeng Chen & Claire Dijk & Tim V. D. Tienhoven & Paulina M. H. Strien & Remco M. Hoogenboezem & Michiel J. W. Wevers & Mathijs A. Sanders & Ivo P. Touw & Marc H. G. P., 2022. "Myeloid cells promote interferon signaling-associated deterioration of the hematopoietic system," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:520:y:2015:i:7548:d:10.1038_nature14131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.