IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v520y2015i7545d10.1038_nature14296.html
   My bibliography  Save this article

Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution

Author

Listed:
  • Ph. Wernet

    (Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • K. Kunnus

    (Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
    Institut für Physik und Astronomie, Universität Potsdam)

  • I. Josefsson

    (Stockholm University, AlbaNova University Center)

  • I. Rajkovic

    (IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
    †Present addresses: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (I.R.); Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany (W.Q., B.K.); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (S.G.); Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (W.Z.).)

  • W. Quevedo

    (IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
    †Present addresses: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (I.R.); Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany (W.Q., B.K.); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (S.G.); Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (W.Z.).)

  • M. Beye

    (Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • S. Schreck

    (Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
    Institut für Physik und Astronomie, Universität Potsdam)

  • S. Grübel

    (IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
    †Present addresses: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (I.R.); Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany (W.Q., B.K.); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (S.G.); Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (W.Z.).)

  • M. Scholz

    (IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry)

  • D. Nordlund

    (Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory)

  • W. Zhang

    (PULSE Institute, SLAC National Accelerator Laboratory, Stanford University
    †Present addresses: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (I.R.); Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany (W.Q., B.K.); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (S.G.); Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (W.Z.).)

  • R. W. Hartsock

    (PULSE Institute, SLAC National Accelerator Laboratory, Stanford University)

  • W. F. Schlotter

    (Linac Coherent Light Source, SLAC National Accelerator Laboratory)

  • J. J. Turner

    (Linac Coherent Light Source, SLAC National Accelerator Laboratory)

  • B. Kennedy

    (MAX-lab
    †Present addresses: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (I.R.); Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany (W.Q., B.K.); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland (S.G.); Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (W.Z.).)

  • F. Hennies

    (MAX-lab)

  • F. M. F. de Groot

    (Utrecht University, Universiteitsweg 99)

  • K. J. Gaffney

    (PULSE Institute, SLAC National Accelerator Laboratory, Stanford University)

  • S. Techert

    (IFG Structural Dynamics of (bio)chemical Systems, Max Planck Institute for Biophysical Chemistry
    Institute for X-ray Physics, Göttingen University
    Structural Dynamics of (Bio)chemical Systems, DESY)

  • M. Odelius

    (Stockholm University, AlbaNova University Center)

  • A. Föhlisch

    (Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
    Institut für Physik und Astronomie, Universität Potsdam)

Abstract

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion1,2. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site3,4,5,6,7,8,9,10,11 that need to be controlled to optimize complexes for photocatalytic hydrogen production8 and selective carbon–hydrogen bond activation9,10,11. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst12,13 with an electron deficiency at the Fe centre14,15, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

Suggested Citation

  • Ph. Wernet & K. Kunnus & I. Josefsson & I. Rajkovic & W. Quevedo & M. Beye & S. Schreck & S. Grübel & M. Scholz & D. Nordlund & W. Zhang & R. W. Hartsock & W. F. Schlotter & J. J. Turner & B. Kennedy , 2015. "Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution," Nature, Nature, vol. 520(7545), pages 78-81, April.
  • Handle: RePEc:nat:nature:v:520:y:2015:i:7545:d:10.1038_nature14296
    DOI: 10.1038/nature14296
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14296
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ambar Banerjee & Michael R. Coates & Markus Kowalewski & Hampus Wikmark & Raphael M. Jay & Philippe Wernet & Michael Odelius, 2022. "Photoinduced bond oscillations in ironpentacarbonyl give delayed synchronous bursts of carbonmonoxide release," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Kyle Barlow & Ryan Phelps & Julien Eng & Tetsuo Katayama & Erica Sutcliffe & Marco Coletta & Euan K. Brechin & Thomas J. Penfold & J. Olof Johansson, 2024. "Tracking nuclear motion in single-molecule magnets using femtosecond X-ray absorption spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:520:y:2015:i:7545:d:10.1038_nature14296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.