IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v519y2015i7544d10.1038_nature14263.html
   My bibliography  Save this article

Structural imprints in vivo decode RNA regulatory mechanisms

Author

Listed:
  • Robert C. Spitale

    (Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine)

  • Ryan A. Flynn

    (Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine)

  • Qiangfeng Cliff Zhang

    (Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine)

  • Pete Crisalli

    (Stanford University)

  • Byron Lee

    (Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine)

  • Jong-Wha Jung

    (Stanford University)

  • Hannes Y. Kuchelmeister

    (Stanford University)

  • Pedro J. Batista

    (Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine)

  • Eduardo A. Torre

    (Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine)

  • Eric T. Kool

    (Stanford University)

  • Howard Y. Chang

    (Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine)

Abstract

The single-stranded nature of RNAs synthesized in the cell gives them great scope to form different structures, but current methods to measure RNA structure in vivo are limited; now, a new methodology allows researchers to examine all four nucleotides in mouse embryonic stem cells.

Suggested Citation

  • Robert C. Spitale & Ryan A. Flynn & Qiangfeng Cliff Zhang & Pete Crisalli & Byron Lee & Jong-Wha Jung & Hannes Y. Kuchelmeister & Pedro J. Batista & Eduardo A. Torre & Eric T. Kool & Howard Y. Chang, 2015. "Structural imprints in vivo decode RNA regulatory mechanisms," Nature, Nature, vol. 519(7544), pages 486-490, March.
  • Handle: RePEc:nat:nature:v:519:y:2015:i:7544:d:10.1038_nature14263
    DOI: 10.1038/nature14263
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14263
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ainara González-Iglesias & Aida Arcas & Ana Domingo-Muelas & Estefania Mancini & Joan Galcerán & Juan Valcárcel & Isabel Fariñas & M. Angela Nieto, 2024. "Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Bo Yu & Pan Li & Qiangfeng Cliff Zhang & Lin Hou, 2022. "Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Debjit Khan & Iyappan Ramachandiran & Kommireddy Vasu & Arnab China & Krishnendu Khan & Fabio Cumbo & Dalia Halawani & Fulvia Terenzi & Isaac Zin & Briana Long & Gregory Costain & Susan Blaser & Amand, 2024. "Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m6A site accessibility," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    4. Tammy C. T. Lan & Matty F. Allan & Lauren E. Malsick & Jia Z. Woo & Chi Zhu & Fengrui Zhang & Stuti Khandwala & Sherry S. Y. Nyeo & Yu Sun & Junjie U. Guo & Mark Bathe & Anders Näär & Anthony Griffith, 2022. "Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Sepideh Tavakoli & Mohammad Nabizadeh & Amr Makhamreh & Howard Gamper & Caroline A. McCormick & Neda K. Rezapour & Ya-Ming Hou & Meni Wanunu & Sara H. Rouhanifard, 2023. "Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Gongwang Yu & Yao Liu & Zizhang Li & Shuyun Deng & Zhuoxing Wu & Xiaoyu Zhang & Wenbo Chen & Junnan Yang & Xiaoshu Chen & Jian-Rong Yang, 2023. "Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Yuwei Zhang & Jieyu Zhao & Xiaona Chen & Yulong Qiao & Jinjin Kang & Xiaofan Guo & Feng Yang & Kaixin Lyu & Yiliang Ding & Yu Zhao & Hao Sun & Chun-Kit Kwok & Huating Wang, 2024. "DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m6A reader YTHDF1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Harshita Sharma & Matthew N. Z. Valentine & Naoko Toki & Hiromi Nishiyori Sueki & Stefano Gustincich & Hazuki Takahashi & Piero Carninci, 2024. "Decryption of sequence, structure, and functional features of SINE repeat elements in SINEUP non-coding RNA-mediated post-transcriptional gene regulation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Ryan Damme & Kongpan Li & Minjie Zhang & Jianhui Bai & Wilson H. Lee & Joseph D. Yesselman & Zhipeng Lu & Willem A. Velema, 2022. "Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Haoran Zhu & Yuning Yang & Yunhe Wang & Fuzhou Wang & Yujian Huang & Yi Chang & Ka-chun Wong & Xiangtao Li, 2023. "Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    11. Shurong Liu & Junhong Huang & Jie Zhou & Siyan Chen & Wujian Zheng & Chang Liu & Qiao Lin & Ping Zhang & Di Wu & Simeng He & Jiayi Ye & Shun Liu & Keren Zhou & Bin Li & Lianghu Qu & Jianhua Yang, 2024. "NAP-seq reveals multiple classes of structured noncoding RNAs with regulatory functions," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:519:y:2015:i:7544:d:10.1038_nature14263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.