IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v516y2014i7531d10.1038_nature14008.html
   My bibliography  Save this article

Structure of influenza A polymerase bound to the viral RNA promoter

Author

Listed:
  • Alexander Pflug

    (European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
    University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France)

  • Delphine Guilligay

    (European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
    University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France)

  • Stefan Reich

    (European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
    University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France)

  • Stephen Cusack

    (European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
    University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France)

Abstract

The influenza virus polymerase transcribes or replicates the segmented RNA genome (viral RNA) into viral messenger RNA or full-length copies. To initiate RNA synthesis, the polymerase binds to the conserved 3′ and 5′ extremities of the viral RNA. Here we present the crystal structure of the heterotrimeric bat influenza A polymerase, comprising subunits PA, PB1 and PB2, bound to its viral RNA promoter. PB1 contains a canonical RNA polymerase fold that is stabilized by large interfaces with PA and PB2. The PA endonuclease and the PB2 cap-binding domain, involved in transcription by cap-snatching, form protrusions facing each other across a solvent channel. The 5′ extremity of the promoter folds into a compact hook that is bound in a pocket formed by PB1 and PA close to the polymerase active site. This structure lays the basis for an atomic-level mechanistic understanding of the many functions of influenza polymerase, and opens new opportunities for anti-influenza drug design.

Suggested Citation

  • Alexander Pflug & Delphine Guilligay & Stefan Reich & Stephen Cusack, 2014. "Structure of influenza A polymerase bound to the viral RNA promoter," Nature, Nature, vol. 516(7531), pages 355-360, December.
  • Handle: RePEc:nat:nature:v:516:y:2014:i:7531:d:10.1038_nature14008
    DOI: 10.1038/nature14008
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14008
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franziska Günl & Tim Krischuns & Julian A. Schreiber & Lea Henschel & Marius Wahrenburg & Hannes C. A. Drexler & Sebastian A. Leidel & Vlad Cojocaru & Guiscard Seebohm & Alexander Mellmann & Martin Sc, 2023. "The ubiquitination landscape of the influenza A virus polymerase," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Jun Ma & Shuangyue Zhang & Xinzheng Zhang, 2021. "Structure of Machupo virus polymerase in complex with matrix protein Z," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Tomas Kouba & Dominik Vogel & Sigurdur R. Thorkelsson & Emmanuelle R. J. Quemin & Harry M. Williams & Morlin Milewski & Carola Busch & Stephan Günther & Kay Grünewald & Maria Rosenthal & Stephen Cusac, 2021. "Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Benoît Arragain & Quentin Durieux Trouilleton & Florence Baudin & Jan Provaznik & Nayara Azevedo & Stephen Cusack & Guy Schoehn & Hélène Malet, 2022. "Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:516:y:2014:i:7531:d:10.1038_nature14008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.