IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v515y2014i7525d10.1038_nature13686.html
   My bibliography  Save this article

Architecture of mammalian respiratory complex I

Author

Listed:
  • Kutti R. Vinothkumar

    (MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK)

  • Jiapeng Zhu

    (MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK)

  • Judy Hirst

    (MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK)

Abstract

Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron–sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.

Suggested Citation

  • Kutti R. Vinothkumar & Jiapeng Zhu & Judy Hirst, 2014. "Architecture of mammalian respiratory complex I," Nature, Nature, vol. 515(7525), pages 80-84, November.
  • Handle: RePEc:nat:nature:v:515:y:2014:i:7525:d:10.1038_nature13686
    DOI: 10.1038/nature13686
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13686
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lindsay McGregor & Samira Acajjaoui & Ambroise Desfosses & Melissa Saïdi & Maria Bacia-Verloop & Jennifer J. Schwarz & Pauline Juyoux & Jill Velsen & Matthew W. Bowler & Andrew A. McCarthy & Eaazhisai, 2023. "The assembly of the Mitochondrial Complex I Assembly complex uncovers a redox pathway coordination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Koki Mise & Jianyin Long & Daniel L. Galvan & Zengchun Ye & Guizhen Fan & Rajesh Sharma & Irina I. Serysheva & Travis I. Moore & Collene R. Jeter & M. Anna Zal & Motoo Araki & Jun Wada & Paul T. Schum, 2024. "NDUFS4 regulates cristae remodeling in diabetic kidney disease," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:515:y:2014:i:7525:d:10.1038_nature13686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.