IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v510y2014i7503d10.1038_nature13475.html
   My bibliography  Save this article

Sphingolipid metabolites in inflammatory disease

Author

Listed:
  • Michael Maceyka

    (Virginia Commonwealth University School of Medicine)

  • Sarah Spiegel

    (Virginia Commonwealth University School of Medicine)

Abstract

Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders.

Suggested Citation

  • Michael Maceyka & Sarah Spiegel, 2014. "Sphingolipid metabolites in inflammatory disease," Nature, Nature, vol. 510(7503), pages 58-67, June.
  • Handle: RePEc:nat:nature:v:510:y:2014:i:7503:d:10.1038_nature13475
    DOI: 10.1038/nature13475
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13475
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Po-Wei Chen & Luis L Fonseca & Yusuf A Hannun & Eberhard O Voit, 2016. "Analysis of the Involvement of Different Ceramide Variants in the Response to Hydroxyurea Stress in Baker's Yeast," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:510:y:2014:i:7503:d:10.1038_nature13475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.