IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v509y2014i7498d10.1038_nature13140.html
   My bibliography  Save this article

Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I

Author

Listed:
  • Alys Peisley

    (Harvard Medical School
    Program in Cellular and Molecular Medicine, Children’s Hospital Boston)

  • Bin Wu

    (Harvard Medical School
    Program in Cellular and Molecular Medicine, Children’s Hospital Boston)

  • Hui Xu

    (University of Texas Southwestern Medical Center)

  • Zhijian J. Chen

    (University of Texas Southwestern Medical Center
    Howard Hughes Medical Institute)

  • Sun Hur

    (Harvard Medical School
    Program in Cellular and Molecular Medicine, Children’s Hospital Boston)

Abstract

RIG-I protein recognizes viral duplex RNA with a 5′-triphosphate group, activating innate immune responses; a crystal structure of its tetrameric CARD signalling domain reveals that non-covalently linked ubiquitin chains stabilize the tetramer in a ‘lock-washer’ structure that serves as a signalling platform for the recruitment and activation of MAVS.

Suggested Citation

  • Alys Peisley & Bin Wu & Hui Xu & Zhijian J. Chen & Sun Hur, 2014. "Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I," Nature, Nature, vol. 509(7498), pages 110-114, May.
  • Handle: RePEc:nat:nature:v:509:y:2014:i:7498:d:10.1038_nature13140
    DOI: 10.1038/nature13140
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13140
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaxin Li & Rui Zhang & Changwan Wang & Junyan Zhu & Miao Ren & Yingbo Jiang & Xianteng Hou & Yangting Du & Qing Wu & Shishi Qi & Lin Li & She Chen & Hui Yang & Fajian Hou, 2023. "WDR77 inhibits prion-like aggregation of MAVS to limit antiviral innate immune response," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Frank Herkules & Corey H. Yu & Alexander B. Taylor & Vi Dougherty & Susan T. Weintraub & Dmitri N. Ivanov, 2022. "Structural and functional asymmetry of RING trimerization controls priming and extension events in TRIM5α autoubiquitylation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Bryan Korithoski & Oralia Kolaczkowski & Krishanu Mukherjee & Reema Kola & Chandra Earl & Bryan Kolaczkowski, 2015. "Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-26, September.
    4. Wenshuai Wang & Benjamin Götte & Rong Guo & Anna Marie Pyle, 2023. "The E3 ligase Riplet promotes RIG-I signaling independent of RIG-I oligomerization," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:509:y:2014:i:7498:d:10.1038_nature13140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.