IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v502y2013i7472d10.1038_nature12752.html
   My bibliography  Save this article

The nexus of chromatin regulation and intermediary metabolism

Author

Listed:
  • Philipp Gut

    (Gladstone Institutes, University of California)

  • Eric Verdin

    (Gladstone Institutes, University of California)

Abstract

Living organisms and individual cells continuously adapt to changes in their environment. Those changes are particularly sensitive to fluctuations in the availability of energy substrates. The cellular transcriptional machinery and its chromatin-associated proteins integrate environmental inputs to mediate homeostatic responses through gene regulation. Numerous connections between products of intermediary metabolism and chromatin proteins have recently been identified. Chromatin modifications that occur in response to metabolic signals are dynamic or stable and might even be inherited transgenerationally. These emerging concepts have biological relevance to tissue homeostasis, disease and ageing.

Suggested Citation

  • Philipp Gut & Eric Verdin, 2013. "The nexus of chromatin regulation and intermediary metabolism," Nature, Nature, vol. 502(7472), pages 489-498, October.
  • Handle: RePEc:nat:nature:v:502:y:2013:i:7472:d:10.1038_nature12752
    DOI: 10.1038/nature12752
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12752
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangbo Song & Zhiquan Li & Lei Zhou & Xin Chen & Wei Qi Guinevere Sew & Héctor Herranz & Zilu Ye & Jesper Velgaard Olsen & Yuan Li & Marianne Nygaard & Kaare Christensen & Xiaoling Tong & Vilhelm A. , 2024. "FOXO-regulated OSER1 reduces oxidative stress and extends lifespan in multiple species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:502:y:2013:i:7472:d:10.1038_nature12752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.