IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v500y2013i7462d10.1038_nature12355.html
   My bibliography  Save this article

The initiation of mammalian protein synthesis and mRNA scanning mechanism

Author

Listed:
  • Ivan B. Lomakin

    (Yale University)

  • Thomas A. Steitz

    (Yale University
    Howard Hughes Medical Institute, Yale University)

Abstract

During translation initiation in eukaryotes, the small ribosomal subunit binds messenger RNA at the 5′ end and scans in the 5′ to 3′ direction to locate the initiation codon, form the 80S initiation complex and start protein synthesis. This simple, yet intricate, process is guided by multiple initiation factors. Here we determine the structures of three complexes of the small ribosomal subunit that represent distinct steps in mammalian translation initiation. These structures reveal the locations of eIF1, eIF1A, mRNA and initiator transfer RNA bound to the small ribosomal subunit and provide insights into the details of translation initiation specific to eukaryotes. Conformational changes associated with the captured functional states reveal the dynamics of the interactions in the P site of the ribosome. These results have functional implications for the mechanism of mRNA scanning.

Suggested Citation

  • Ivan B. Lomakin & Thomas A. Steitz, 2013. "The initiation of mammalian protein synthesis and mRNA scanning mechanism," Nature, Nature, vol. 500(7462), pages 307-311, August.
  • Handle: RePEc:nat:nature:v:500:y:2013:i:7462:d:10.1038_nature12355
    DOI: 10.1038/nature12355
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12355
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna B. Loveland & Egor Svidritskiy & Denis Susorov & Soojin Lee & Alexander Park & Sarah Zvornicanin & Gabriel Demo & Fen-Biao Gao & Andrei A. Korostelev, 2022. "Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:500:y:2013:i:7462:d:10.1038_nature12355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.