IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v493y2013i7433d10.1038_493473a.html
   My bibliography  Save this article

A vision for data science

Author

Listed:
  • Chris A. Mattmann

    (Chris A. Mattmann is a senior computer scientist at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA, and adjunct assistant professor in computer science at the University of Southern California, Los Angeles, California 90089, USA.)

Abstract

To get the best out of big data, funding agencies should develop shared tools for optimizing discovery and train a new breed of researchers, says Chris A. Mattmann.

Suggested Citation

  • Chris A. Mattmann, 2013. "A vision for data science," Nature, Nature, vol. 493(7433), pages 473-475, January.
  • Handle: RePEc:nat:nature:v:493:y:2013:i:7433:d:10.1038_493473a
    DOI: 10.1038/493473a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/493473a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/493473a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daphne R. Raban & Avishag Gordon, 2020. "The evolution of data science and big data research: A bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1563-1581, March.
    2. Alberto Fernández & Sara Río & Abdullah Bawakid & Francisco Herrera, 2017. "Fuzzy rule based classification systems for big data with MapReduce: granularity analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 711-730, December.
    3. Le Zhang & Chunqiu Zheng & Tian Li & Lei Xing & Han Zeng & Tingting Li & Huan Yang & Jia Cao & Badong Chen & Ziyuan Zhou, 2017. "Building Up a Robust Risk Mathematical Platform to Predict Colorectal Cancer," Complexity, Hindawi, vol. 2017, pages 1-14, October.
    4. Joyce de Souza Zanirato Maia & Ana Paula Arantes Bueno & Joao Ricardo Sato, 2023. "Applications of Artificial Intelligence Models in Educational Analytics and Decision Making: A Systematic Review," World, MDPI, vol. 4(2), pages 1-26, May.
    5. Yan, Li & Cao, Huiying & Gao, Chao & Wang, Zhen & Li, Xuelong, 2023. "Mining of book-loan behavior based on coupling relationship analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:493:y:2013:i:7433:d:10.1038_493473a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.