IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v491y2012i7426d10.1038_nature11498.html
   My bibliography  Save this article

Visualizing transient low-populated structures of RNA

Author

Listed:
  • Elizabeth A. Dethoff

    (University of Michigan, 930 North University Avenue)

  • Katja Petzold

    (University of Michigan, 930 North University Avenue)

  • Jeetender Chugh

    (University of Michigan, 930 North University Avenue)

  • Anette Casiano-Negroni

    (University of Michigan, 930 North University Avenue
    Present address: NYMIRUM, 3510 West Liberty Road, Ann Arbor, Michigan 48103, USA.)

  • Hashim M. Al-Hashimi

    (University of Michigan, 930 North University Avenue)

Abstract

The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized so far involve long-lived species that can be captured by structure characterization techniques. Here we report the nuclear magnetic resonance visualization of RNA transitions towards ‘invisible’ excited states (ESs), which exist in too little abundance (2–13%) and for too short a duration (45–250 μs) to allow structural characterization by conventional techniques. Transitions towards ESs result in localized rearrangements in base-pairing that alter building block elements of RNA architecture, including helix–junction–helix motifs and apical loops. The ES can inhibit function by sequestering residues involved in recognition and signalling or promote ATP-independent strand exchange. Thus, RNAs do not adopt a single conformation, but rather exist in rapid equilibrium with alternative ESs, which can be stabilized by cellular cues to affect functional outcomes.

Suggested Citation

  • Elizabeth A. Dethoff & Katja Petzold & Jeetender Chugh & Anette Casiano-Negroni & Hashim M. Al-Hashimi, 2012. "Visualizing transient low-populated structures of RNA," Nature, Nature, vol. 491(7426), pages 724-728, November.
  • Handle: RePEc:nat:nature:v:491:y:2012:i:7426:d:10.1038_nature11498
    DOI: 10.1038/nature11498
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11498
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge Han & Yi Xue, 2022. "Rational design of hairpin RNA excited states reveals multi-step transitions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ainan Geng & Laura Ganser & Rohit Roy & Honglue Shi & Supriya Pratihar & David A. Case & Hashim M. Al-Hashimi, 2023. "An RNA excited conformational state at atomic resolution," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:491:y:2012:i:7426:d:10.1038_nature11498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.