IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v491y2012i7424d10.1038_nature11707.html
   My bibliography  Save this article

Mitochondrial disorders as windows into an ancient organelle

Author

Listed:
  • Scott B. Vafai

    (Center for Human Genetic Research, Massachusetts General Hospital
    Broad Institute of Harvard and Massachusetts Institute of Technology)

  • Vamsi K. Mootha

    (Center for Human Genetic Research, Massachusetts General Hospital
    Broad Institute of Harvard and Massachusetts Institute of Technology
    Harvard Medical School)

Abstract

Much of our current knowledge about mitochondria has come from studying patients who have respiratory chain disorders. These disorders comprise a large collection of individually rare syndromes, each presenting in a unique and often devastating way. In recent years, there has been great progress in defining their genetic basis, but we still know little about the cascade of events that gives rise to such diverse pathology. Here, we review these disorders and explore them in the context of a contemporary understanding of mitochondrial evolution, biochemistry and genetics. Fully deciphering their pathogenesis is a challenging next step that will inspire the development of drug treatments for rare and common diseases.

Suggested Citation

  • Scott B. Vafai & Vamsi K. Mootha, 2012. "Mitochondrial disorders as windows into an ancient organelle," Nature, Nature, vol. 491(7424), pages 374-383, November.
  • Handle: RePEc:nat:nature:v:491:y:2012:i:7424:d:10.1038_nature11707
    DOI: 10.1038/nature11707
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11707
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caroline Beaudoin-Chabot & Lei Wang & Cenk Celik & Aishah Tul-Firdaus Abdul Khalid & Subhash Thalappilly & Shiyi Xu & Jhee Hong Koh & Venus Wen Xuan Lim & Ann Don Low & Guillaume Thibault, 2022. "The unfolded protein response reverses the effects of glucose on lifespan in chemically-sterilized C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Emma Puighermanal & Marta Luna-Sánchez & Alejandro Gella & Gunter van der Walt & Andrea Urpi & María Royo & Paula Tena-Morraja & Isabella Appiah & Maria Helena de Donato & Fabien Menardy & Patrizia Bi, 2024. "Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Pedro Silva-Pinheiro & Pavel A. Nash & Lindsey Van Haute & Christian D. Mutti & Keira Turner & Michal Minczuk, 2022. "In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Cecilia Patitucci & Juan Diego Hernández-Camacho & Elodie Vimont & Sonny Yde & Thomas Cokelaer & Thibault Chaze & Quentin Giai Gianetto & Mariette Matondo & Anastasia Gazi & Ivan Nemazanyy & David A. , 2023. "Mtfp1 ablation enhances mitochondrial respiration and protects against hepatic steatosis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Christian M Hagen & Vanessa F Gonçalves & Paula L Hedley & Jonas Bybjerg-Grauholm & Marie Bækvad-Hansen & Christine S Hansen & Jørgen K Kanters & Jimmi Nielsen & Ole Mors & Alfonso B Demur & Thomas D , 2018. "Schizophrenia-associated mt-DNA SNPs exhibit highly variable haplogroup affiliation and nuclear ancestry: Bi-genomic dependence raises major concerns for link to disease," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:491:y:2012:i:7424:d:10.1038_nature11707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.