IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v490y2012i7418d10.1038_nature11505.html
   My bibliography  Save this article

Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback

Author

Listed:
  • R. Vijay

    (Quantum Nanoelectronics Laboratory, University of California)

  • C. Macklin

    (Quantum Nanoelectronics Laboratory, University of California)

  • D. H. Slichter

    (Quantum Nanoelectronics Laboratory, University of California
    Present address: Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA.)

  • S. J. Weber

    (Quantum Nanoelectronics Laboratory, University of California)

  • K. W. Murch

    (Quantum Nanoelectronics Laboratory, University of California)

  • R. Naik

    (Quantum Nanoelectronics Laboratory, University of California)

  • A. N. Korotkov

    (University of California)

  • I. Siddiqi

    (Quantum Nanoelectronics Laboratory, University of California)

Abstract

Real-time quantum feedback based on weak measurement of the quantum state is used to stabilize the oscillation phase of a driven quantum bit.

Suggested Citation

  • R. Vijay & C. Macklin & D. H. Slichter & S. J. Weber & K. W. Murch & R. Naik & A. N. Korotkov & I. Siddiqi, 2012. "Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback," Nature, Nature, vol. 490(7418), pages 77-80, October.
  • Handle: RePEc:nat:nature:v:490:y:2012:i:7418:d:10.1038_nature11505
    DOI: 10.1038/nature11505
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11505
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antti Vepsäläinen & Roni Winik & Amir H. Karamlou & Jochen Braumüller & Agustin Di Paolo & Youngkyu Sung & Bharath Kannan & Morten Kjaergaard & David K. Kim & Alexander J. Melville & Bethany M. Niedzi, 2022. "Improving qubit coherence using closed-loop feedback," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. William P. Livingston & Machiel S. Blok & Emmanuel Flurin & Justin Dressel & Andrew N. Jordan & Irfan Siddiqi, 2022. "Experimental demonstration of continuous quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:490:y:2012:i:7418:d:10.1038_nature11505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.