IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v488y2012i7410d10.1038_nature11271.html
   My bibliography  Save this article

Protein activity regulation by conformational entropy

Author

Listed:
  • Shiou-Ru Tzeng

    (Rutgers University)

  • Charalampos G. Kalodimos

    (Rutgers University)

Abstract

Some variants of the bacterial gene regulator CAP show marked differences in their affinity for DNA despite identical DNA-binding interfaces; NMR spectroscopy experiments now show that DNA binding is determined by the proteins’ internal dynamics over a broad range of timescales in a manner that cannot be predicted from the proteins’ ground-state structures.

Suggested Citation

  • Shiou-Ru Tzeng & Charalampos G. Kalodimos, 2012. "Protein activity regulation by conformational entropy," Nature, Nature, vol. 488(7410), pages 236-240, August.
  • Handle: RePEc:nat:nature:v:488:y:2012:i:7410:d:10.1038_nature11271
    DOI: 10.1038/nature11271
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11271
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatu Pantsar & Sami Rissanen & Daniel Dauch & Tuomo Laitinen & Ilpo Vattulainen & Antti Poso, 2018. "Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-23, September.
    2. Tek Narsingh Malla & Kara Zielinski & Luis Aldama & Sasa Bajt & Denisse Feliz & Brendon Hayes & Mark Hunter & Christopher Kupitz & Stella Lisova & Juraj Knoska & Jose Manuel Martin-Garcia & Valerio Ma, 2023. "Heterogeneity in M. tuberculosis β-lactamase inhibition by Sulbactam," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Anna U Lowegard & Marcel S Frenkel & Graham T Holt & Jonathan D Jou & Adegoke A Ojewole & Bruce R Donald, 2020. "Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:488:y:2012:i:7410:d:10.1038_nature11271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.