IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v486y2012i7403d10.1038_nature11211.html
   My bibliography  Save this article

Structure of yeast Argonaute with guide RNA

Author

Listed:
  • Kotaro Nakanishi

    (Structural Biology Program, Memorial Sloan-Kettering Cancer Center)

  • David E. Weinberg

    (Whitehead Institute for Biomedical Research, 9 Cambridge Center
    Massachusetts Institute of Technology)

  • David P. Bartel

    (Whitehead Institute for Biomedical Research, 9 Cambridge Center
    Massachusetts Institute of Technology)

  • Dinshaw J. Patel

    (Structural Biology Program, Memorial Sloan-Kettering Cancer Center)

Abstract

The RNA-induced silencing complex, comprising Argonaute and guide RNA, mediates RNA interference. Here we report the 3.2 Å crystal structure of Kluyveromyces polysporus Argonaute (KpAGO) fortuitously complexed with guide RNA originating from small-RNA duplexes autonomously loaded and processed by recombinant KpAGO. Despite their diverse sequences, guide-RNA nucleotides 1–8 are positioned similarly, with sequence-independent contacts to bases, phosphates and 2′-hydroxyl groups pre-organizing the backbone of nucleotides 2–8 in a near-A-form conformation. Compared with prokaryotic Argonautes, KpAGO has numerous surface-exposed insertion segments, with a cluster of conserved insertions repositioning the N domain to enable full propagation of guide–target pairing. Compared with Argonautes in inactive conformations, KpAGO has a hydrogen-bond network that stabilizes an expanded and repositioned loop, which inserts an invariant glutamate into the catalytic pocket. Mutation analyses and analogies to ribonuclease H indicate that insertion of this glutamate finger completes a universally conserved catalytic tetrad, thereby activating Argonaute for RNA cleavage.

Suggested Citation

  • Kotaro Nakanishi & David E. Weinberg & David P. Bartel & Dinshaw J. Patel, 2012. "Structure of yeast Argonaute with guide RNA," Nature, Nature, vol. 486(7403), pages 368-374, June.
  • Handle: RePEc:nat:nature:v:486:y:2012:i:7403:d:10.1038_nature11211
    DOI: 10.1038/nature11211
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11211
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justine M Pompey & Bardees Foda & Upinder Singh, 2015. "A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    2. Carolien Bastiaanssen & Pilar Bobadilla Ugarte & Kijun Kim & Giada Finocchio & Yanlei Feng & Todd A. Anzelon & Stephan Köstlbacher & Daniel Tamarit & Thijs J. G. Ettema & Martin Jinek & Ian J. MacRae , 2024. "RNA-guided RNA silencing by an Asgard archaeal Argonaute," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Hanlun Jiang & Fu Kit Sheong & Lizhe Zhu & Xin Gao & Julie Bernauer & Xuhui Huang, 2015. "Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:486:y:2012:i:7403:d:10.1038_nature11211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.