IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v485y2012i7399d10.1038_nature11024.html
   My bibliography  Save this article

Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago

Author

Listed:
  • C. Brenhin Keller

    (Princeton University)

  • Blair Schoene

    (Princeton University)

Abstract

Statistical sampling of a large geochemical database reveals a pervasive discontinuity about 2.5 billion years ago, indicating marked changes in mantle and deep-crustal melting, and providing a link between deep Earth processes and the rise of atmospheric oxygen on the Earth.

Suggested Citation

  • C. Brenhin Keller & Blair Schoene, 2012. "Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago," Nature, Nature, vol. 485(7399), pages 490-493, May.
  • Handle: RePEc:nat:nature:v:485:y:2012:i:7399:d:10.1038_nature11024
    DOI: 10.1038/nature11024
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11024
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Pitcher, Bradley W & Kent, Adam J.R., 2018. "Statistics and segmentation: Using Big Data to assess Cascades Arc compositional variability," Earth Arxiv 6xq3w, Center for Open Science.
    3. Bo Huang & Man Liu & Timothy M. Kusky & Tim E. Johnson & Simon A. Wilde & Dong Fu & Hao Deng & Qunye Qian, 2023. "Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Di-Cheng Zhu & Qing Wang & Roberto F. Weinberg & Peter A. Cawood & Sun-Lin Chung & Yong-Fei Zheng & Zhidan Zhao & Zeng-Qian Hou & Xuan-Xue Mo, 2022. "Interplay between oceanic subduction and continental collision in building continental crust," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:485:y:2012:i:7399:d:10.1038_nature11024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.