IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v484y2012i7394d10.1038_nature10986.html
   My bibliography  Save this article

A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism

Author

Listed:
  • Mark A. Herman

    (Diabetes and Metabolism, Harvard Medical School)

  • Odile D. Peroni

    (Diabetes and Metabolism, Harvard Medical School)

  • Jorge Villoria

    (Diabetes and Metabolism, Harvard Medical School)

  • Michael R. Schön

    (Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe 76133, Germany)

  • Nada A. Abumrad

    (Center for Human Nutrition, Washington University School of Medicine)

  • Matthias Blüher

    (University of Leipzig)

  • Samuel Klein

    (Center for Human Nutrition, Washington University School of Medicine)

  • Barbara B. Kahn

    (Diabetes and Metabolism, Harvard Medical School)

Abstract

The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-β) that is transcribed from an alternative promoter. ChREBP-β expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.

Suggested Citation

  • Mark A. Herman & Odile D. Peroni & Jorge Villoria & Michael R. Schön & Nada A. Abumrad & Matthias Blüher & Samuel Klein & Barbara B. Kahn, 2012. "A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism," Nature, Nature, vol. 484(7394), pages 333-338, April.
  • Handle: RePEc:nat:nature:v:484:y:2012:i:7394:d:10.1038_nature10986
    DOI: 10.1038/nature10986
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10986
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander J. Hu & Wei Li & Calvin Dinh & Yongzhao Zhang & Jamie K. Hu & Stefano G. Daniele & Xiaoli Hou & Zixuan Yang & John M. Asara & Guo-fu Hu & Stephen R. Farmer & Miaofen G. Hu, 2024. "CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Liora S. Katz & Gabriel Brill & Pili Zhang & Anil Kumar & Sharon Baumel-Alterzon & Lee B. Honig & Nicolás Gómez-Banoy & Esra Karakose & Marius Tanase & Ludivine Doridot & Alexandra Alvarsson & Bennett, 2022. "Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Shuai Yan & Anna Santoro & Micah J. Niphakis & Antonio M. Pinto & Christopher L. Jacobs & Rasheed Ahmad & Radu M. Suciu & Bryan R. Fonslow & Rachel A. Herbst-Graham & Nhi Ngo & Cassandra L. Henry & Dy, 2024. "Inflammation causes insulin resistance in mice via interferon regulatory factor 3 (IRF3)-mediated reduction in FAHFA levels," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:484:y:2012:i:7394:d:10.1038_nature10986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.