IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v483y2012i7391d10.1038_nature10911.html
   My bibliography  Save this article

The mechanism of OTUB1-mediated inhibition of ubiquitination

Author

Listed:
  • Reuven Wiener

    (Johns Hopkins University School of Medicine)

  • Xiangbin Zhang

    (Johns Hopkins University School of Medicine)

  • Tao Wang

    (Johns Hopkins University School of Medicine
    Present address: National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, Maryland 20892, USA)

  • Cynthia Wolberger

    (Johns Hopkins University School of Medicine)

Abstract

OTUB1 is an atypical deubiquitinating enzyme which prevents ubiquitin attachment and is important in the DNA damage pathway; structural analysis of OTUB1 in complex with an E2 ubiquitin-conjugating enzyme reveals that the ability of OTUB1 to inhibit ubiquitin chain synthesis is regulated by an allosteric feedback mechanism.

Suggested Citation

  • Reuven Wiener & Xiangbin Zhang & Tao Wang & Cynthia Wolberger, 2012. "The mechanism of OTUB1-mediated inhibition of ubiquitination," Nature, Nature, vol. 483(7391), pages 618-622, March.
  • Handle: RePEc:nat:nature:v:483:y:2012:i:7391:d:10.1038_nature10911
    DOI: 10.1038/nature10911
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10911
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:483:y:2012:i:7391:d:10.1038_nature10911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.