IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v482y2012i7386d10.1038_nature10822.html
   My bibliography  Save this article

Ubiquitin-dependent regulation of COPII coat size and function

Author

Listed:
  • Lingyan Jin

    (University of California at Berkeley)

  • Kanika Bajaj Pahuja

    (University of California at Berkeley
    Howard Hughes Medical Institute, University of California at Berkeley)

  • Katherine E. Wickliffe

    (University of California at Berkeley)

  • Amita Gorur

    (University of California at Berkeley
    Howard Hughes Medical Institute, University of California at Berkeley)

  • Christine Baumgärtel

    (University of California at Berkeley)

  • Randy Schekman

    (University of California at Berkeley
    Howard Hughes Medical Institute, University of California at Berkeley)

  • Michael Rape

    (University of California at Berkeley)

Abstract

Packaging of proteins from the endoplasmic reticulum into COPII vesicles is essential for secretion. In cells, most COPII vesicles are approximately 60–80 nm in diameter, yet some must increase their size to accommodate 300–400 nm procollagen fibres or chylomicrons. Impaired COPII function results in collagen deposition defects, cranio-lenticulo-sutural dysplasia, or chylomicron retention disease, but mechanisms to enlarge COPII coats have remained elusive. Here, we identified the ubiquitin ligase CUL3–KLHL12 as a regulator of COPII coat formation. CUL3–KLHL12 catalyses the monoubiquitylation of the COPII-component SEC31 and drives the assembly of large COPII coats. As a result, ubiquitylation by CUL3–KLHL12 is essential for collagen export, yet less important for the transport of small cargo. We conclude that monoubiquitylation controls the size and function of a vesicle coat.

Suggested Citation

  • Lingyan Jin & Kanika Bajaj Pahuja & Katherine E. Wickliffe & Amita Gorur & Christine Baumgärtel & Randy Schekman & Michael Rape, 2012. "Ubiquitin-dependent regulation of COPII coat size and function," Nature, Nature, vol. 482(7386), pages 495-500, February.
  • Handle: RePEc:nat:nature:v:482:y:2012:i:7386:d:10.1038_nature10822
    DOI: 10.1038/nature10822
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10822
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weize Wang & Ling Liang & Zonglin Dai & Peng Zuo & Shang Yu & Yishuo Lu & Dian Ding & Hongyi Chen & Hui Shan & Yan Jin & Youdong Mao & Yuxin Yin, 2024. "A conserved N-terminal motif of CUL3 contributes to assembly and E3 ligase activity of CRL3KLHL22," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. William Kasberg & Peter Luong & Kevin A. Swift & Anjon Audhya, 2023. "Nutrient deprivation alters the rate of COPII subunit recruitment at ER subdomains to tune secretory protein transport," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Anthony J. Asmar & Shaun R. Abrams & Jenny Hsin & Jason C. Collins & Rita M. Yazejian & Youmei Wu & Jean Cho & Andrew D. Doyle & Samhitha Cinthala & Marleen Simon & Richard H. Jaarsveld & David B. Bec, 2023. "A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:482:y:2012:i:7386:d:10.1038_nature10822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.