IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v475y2011i7355d10.1038_nature10199.html
   My bibliography  Save this article

Functional regeneration of respiratory pathways after spinal cord injury

Author

Listed:
  • Warren J. Alilain

    (Case Western Reserve University School of Medicine)

  • Kevin P. Horn

    (Case Western Reserve University School of Medicine)

  • Hongmei Hu

    (Case Western Reserve University School of Medicine)

  • Thomas E. Dick

    (Case Western Reserve University School of Medicine
    Critical Care, and Sleep Medicine, Case Western Reserve University School of Medicine)

  • Jerry Silver

    (Case Western Reserve University School of Medicine)

Abstract

Spinal cord injuries often occur at the cervical level above the phrenic motor pools, which innervate the diaphragm. The effects of impaired breathing are a leading cause of death from spinal cord injuries, underscoring the importance of developing strategies to restore respiratory activity. Here we show that, after cervical spinal cord injury, the expression of chondroitin sulphate proteoglycans (CSPGs) associated with the perineuronal net (PNN) is upregulated around the phrenic motor neurons. Digestion of these potently inhibitory extracellular matrix molecules with chondroitinase ABC (denoted ChABC) could, by itself, promote the plasticity of tracts that were spared and restore limited activity to the paralysed diaphragm. However, when combined with a peripheral nerve autograft, ChABC treatment resulted in lengthy regeneration of serotonin-containing axons and other bulbospinal fibres and remarkable recovery of diaphragmatic function. After recovery and initial transection of the graft bridge, there was an unusual, overall increase in tonic electromyographic activity of the diaphragm, suggesting that considerable remodelling of the spinal cord circuitry occurs after regeneration. This increase was followed by complete elimination of the restored activity, proving that regeneration is crucial for the return of function. Overall, these experiments present a way to markedly restore the function of a single muscle after debilitating trauma to the central nervous system, through both promoting the plasticity of spared tracts and regenerating essential pathways.

Suggested Citation

  • Warren J. Alilain & Kevin P. Horn & Hongmei Hu & Thomas E. Dick & Jerry Silver, 2011. "Functional regeneration of respiratory pathways after spinal cord injury," Nature, Nature, vol. 475(7355), pages 196-200, July.
  • Handle: RePEc:nat:nature:v:475:y:2011:i:7355:d:10.1038_nature10199
    DOI: 10.1038/nature10199
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10199
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaac Francos-Quijorna & Marina Sánchez-Petidier & Emily R. Burnside & Smaranda R. Badea & Abel Torres-Espin & Lucy Marshall & Fred Winter & Joost Verhaagen & Victoria Moreno-Manzano & Elizabeth J. Br, 2022. "Chondroitin sulfate proteoglycans prevent immune cell phenotypic conversion and inflammation resolution via TLR4 in rodent models of spinal cord injury," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    2. Myungsik Yoo & Muntasir Khaled & Kurt M Gibbs & Jonghun Kim & Björn Kowalewski & Thomas Dierks & Melitta Schachner, 2013. "Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:475:y:2011:i:7355:d:10.1038_nature10199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.