IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v472y2011i7344d10.1038_nature09973.html
   My bibliography  Save this article

TLR signalling augments macrophage bactericidal activity through mitochondrial ROS

Author

Listed:
  • A. Phillip West

    (Yale University School of Medicine)

  • Igor E. Brodsky

    (Yale University School of Medicine
    Present address: Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA.)

  • Christoph Rahner

    (Yale University School of Medicine)

  • Dong Kyun Woo

    (Yale University School of Medicine)

  • Hediye Erdjument-Bromage

    (Molecular Biology Program, Memorial Sloan-Kettering Cancer Center)

  • Paul Tempst

    (Molecular Biology Program, Memorial Sloan-Kettering Cancer Center)

  • Matthew C. Walsh

    (University of Pennsylvania School of Medicine)

  • Yongwon Choi

    (University of Pennsylvania School of Medicine)

  • Gerald S. Shadel

    (Yale University School of Medicine)

  • Sankar Ghosh

    (College of Physicians and Surgeons, Columbia University)

Abstract

Mitochondrial role in innate immunity The stimulation of a subset of surface Toll-like receptors (TLRs), transmembrane proteins of the innate immune system that recognize microbe-derived molecules, is shown to induce production of reactive oxygen for bacterial killing by the mitochondrial pathway. When the 'bacterial' TLRs (TLR1, 2 and 4) bind to a ligand they promote the recruitment of mitochondria to macrophage phagosomes and induce upregulation of mitochondrial reactive oxygen species (mROS). This work implicates mROS as important components of antibacterial responses and further establishes mitochondria as hubs for innate immune signalling.

Suggested Citation

  • A. Phillip West & Igor E. Brodsky & Christoph Rahner & Dong Kyun Woo & Hediye Erdjument-Bromage & Paul Tempst & Matthew C. Walsh & Yongwon Choi & Gerald S. Shadel & Sankar Ghosh, 2011. "TLR signalling augments macrophage bactericidal activity through mitochondrial ROS," Nature, Nature, vol. 472(7344), pages 476-480, April.
  • Handle: RePEc:nat:nature:v:472:y:2011:i:7344:d:10.1038_nature09973
    DOI: 10.1038/nature09973
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09973
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xudong Wang & Siyu Su & Yuqing Zhu & Xiaolong Cheng & Chen Cheng & Leilei Chen & Anhua Lei & Li Zhang & Yuyan Xu & Dan Ye & Yi Zhang & Wei Li & Jin Zhang, 2023. "Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Lindsay McGregor & Samira Acajjaoui & Ambroise Desfosses & Melissa Saïdi & Maria Bacia-Verloop & Jennifer J. Schwarz & Pauline Juyoux & Jill Velsen & Matthew W. Bowler & Andrew A. McCarthy & Eaazhisai, 2023. "The assembly of the Mitochondrial Complex I Assembly complex uncovers a redox pathway coordination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Jawaher Alharthi & Ali Bayoumi & Khaled Thabet & Ziyan Pan & Brian S. Gloss & Olivier Latchoumanin & Mischa Lundberg & Natalie A. Twine & Duncan McLeod & Shafi Alenizi & Leon A. Adams & Martin Weltman, 2022. "A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Clive Drakeford & Sonia Aguila & Fiona Roche & Karsten Hokamp & Judicael Fazavana & Mariana P. Cervantes & Annie M. Curtis & Heike C. Hawerkamp & Sukhraj Pal Singh Dhami & Hugo Charles-Messance & Emer, 2022. "von Willebrand factor links primary hemostasis to innate immunity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Mohammad Naimul Islam & Galina A. Gusarova & Shonit R. Das & Li Li & Eiji Monma & Murari Anjaneyulu & Liberty Mthunzi & Sadiqa K. Quadri & Edward Owusu-Ansah & Sunita Bhattacharya & Jahar Bhattacharya, 2022. "The mitochondrial calcium uniporter of pulmonary type 2 cells determines severity of acute lung injury," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Shuai Gao & Lingyu Gao & Dailin Yuan & Xu’ai Lin & Stijn Veen, 2024. "Gonococcal OMV-delivered PorB induces epithelial cell mitophagy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:472:y:2011:i:7344:d:10.1038_nature09973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.