Author
Listed:
- Julio T. Barreiro
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25)
- Markus Müller
(Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstrasse 21A
Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25)
- Philipp Schindler
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25)
- Daniel Nigg
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25)
- Thomas Monz
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25)
- Michael Chwalla
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25
Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstrasse 21A)
- Markus Hennrich
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25)
- Christian F. Roos
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25
Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstrasse 21A)
- Peter Zoller
(Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstrasse 21A
Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25)
- Rainer Blatt
(Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25
Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstrasse 21A)
Abstract
The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we realize an experimental toolbox for simulating an open quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.
Suggested Citation
Julio T. Barreiro & Markus Müller & Philipp Schindler & Daniel Nigg & Thomas Monz & Michael Chwalla & Markus Hennrich & Christian F. Roos & Peter Zoller & Rainer Blatt, 2011.
"An open-system quantum simulator with trapped ions,"
Nature, Nature, vol. 470(7335), pages 486-491, February.
Handle:
RePEc:nat:nature:v:470:y:2011:i:7335:d:10.1038_nature09801
DOI: 10.1038/nature09801
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022.
"Artificial Intelligence Computing at the Quantum Level,"
Data, MDPI, vol. 7(3), pages 1-16, February.
- Maria Mannone & Antonio Chella & Giovanni Pilato & Valeria Seidita & Filippo Vella & Salvatore Gaglio, 2024.
"Modeling Robotic Thinking and Creativity: A Classic–Quantum Dialogue,"
Mathematics, MDPI, vol. 12(5), pages 1-16, February.
- Gianluca Aiello & Mathieu Féchant & Alexis Morvan & Julien Basset & Marco Aprili & Julien Gabelli & Jérôme Estève, 2022.
"Quantum bath engineering of a high impedance microwave mode through quasiparticle tunneling,"
Nature Communications, Nature, vol. 13(1), pages 1-6, December.
- Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023.
"Non-Abelian effects in dissipative photonic topological lattices,"
Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Luati, Alessandra & Novelli, Marco, 2020.
"The Hammersley–Chapman–Robbins inequality for repeatedly monitored quantum system,"
Statistics & Probability Letters, Elsevier, vol. 165(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:470:y:2011:i:7335:d:10.1038_nature09801. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.