IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v465y2010i7297d10.1038_nature09032.html
   My bibliography  Save this article

G domain dimerization controls dynamin's assembly-stimulated GTPase activity

Author

Listed:
  • Joshua S. Chappie

    (Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
    The Scripps Research Institute, La Jolla, California 92037, USA)

  • Sharmistha Acharya

    (The Scripps Research Institute, La Jolla, California 92037, USA)

  • Marilyn Leonard

    (The Scripps Research Institute, La Jolla, California 92037, USA)

  • Sandra L. Schmid

    (The Scripps Research Institute, La Jolla, California 92037, USA)

  • Fred Dyda

    (Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA)

Abstract

Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin’s basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 Å resolution crystal structure of a human dynamin 1-derived minimal GTPase–GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF4-.The structure reveals dynamin’s catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase–GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.

Suggested Citation

  • Joshua S. Chappie & Sharmistha Acharya & Marilyn Leonard & Sandra L. Schmid & Fred Dyda, 2010. "G domain dimerization controls dynamin's assembly-stimulated GTPase activity," Nature, Nature, vol. 465(7297), pages 435-440, May.
  • Handle: RePEc:nat:nature:v:465:y:2010:i:7297:d:10.1038_nature09032
    DOI: 10.1038/nature09032
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09032
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katherine Bonnycastle & Katharine L. Dobson & Eva-Maria Blumrich & Akshada Gajbhiye & Elizabeth C. Davenport & Marie Pronot & Moritz Steinruecke & Matthias Trost & Alfredo Gonzalez-Sulser & Michael A., 2023. "Reversal of cell, circuit and seizure phenotypes in a mouse model of DNM1 epileptic encephalopathy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Lucas Gewehr & Benedikt Junglas & Ruven Jilly & Johannes Franz & Wenyu Eva Zhu & Tobias Weidner & Mischa Bonn & Carsten Sachse & Dirk Schneider, 2023. "SynDLP is a dynamin-like protein of Synechocystis sp. PCC 6803 with eukaryotic features," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:465:y:2010:i:7297:d:10.1038_nature09032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.