IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v464y2010i7286d10.1038_nature08918.html
   My bibliography  Save this article

Electron liquids and solids in one dimension

Author

Listed:
  • Vikram V. Deshpande

    (Columbia University)

  • Marc Bockrath

    (University of California)

  • Leonid I. Glazman

    (Yale University)

  • Amir Yacoby

    (Harvard University)

Abstract

Even though bulk metallic systems contain a very large number of strongly interacting electrons, their properties are well described within Landau's Fermi liquid theory of non-interacting quasiparticles. Although many higher-dimensional systems can be successfully understood on the basis of such non-interacting theories, this is not possible for one-dimensional systems. When confined to narrow channels, electron interaction gives rise to such exotic phenomena as spin–charge separation and the emergence of correlated-electron insulators. Such strongly correlated electronic behaviour has recently been seen in experiments on one-dimensional carbon nanotubes and nanowires, and this behaviour challenges the theoretical description of such systems.

Suggested Citation

  • Vikram V. Deshpande & Marc Bockrath & Leonid I. Glazman & Amir Yacoby, 2010. "Electron liquids and solids in one dimension," Nature, Nature, vol. 464(7286), pages 209-216, March.
  • Handle: RePEc:nat:nature:v:464:y:2010:i:7286:d:10.1038_nature08918
    DOI: 10.1038/nature08918
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08918
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo Yu & Pengjie Wang & Ayelet J. Uzan-Narovlansky & Yanyu Jia & Michael Onyszczak & Ratnadwip Singha & Xin Gui & Tiancheng Song & Yue Tang & Kenji Watanabe & Takashi Taniguchi & Robert J. Cava & Lesl, 2023. "Evidence for two dimensional anisotropic Luttinger liquids at millikelvin temperatures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Manzetti, Sergio & Andersen, Otto, 2012. "Toxicological aspects of nanomaterials used in energy harvesting consumer electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2102-2110.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:464:y:2010:i:7286:d:10.1038_nature08918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.