IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v463y2010i7283d10.1038_nature08765.html
   My bibliography  Save this article

Active site remodelling accompanies thioester bond formation in the SUMO E1

Author

Listed:
  • Shaun K. Olsen

    (Structural Biology and,)

  • Allan D. Capili

    (Structural Biology and,)

  • Xuequan Lu

    (Molecular Pharmacology and Chemistry Programs, Sloan-Kettering Institute, New York, New York 10065, USA)

  • Derek S. Tan

    (Molecular Pharmacology and Chemistry Programs, Sloan-Kettering Institute, New York, New York 10065, USA)

  • Christopher D. Lima

    (Structural Biology and,)

Abstract

E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 Å, respectively. These structures show that side chain contacts to ATP·Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

Suggested Citation

  • Shaun K. Olsen & Allan D. Capili & Xuequan Lu & Derek S. Tan & Christopher D. Lima, 2010. "Active site remodelling accompanies thioester bond formation in the SUMO E1," Nature, Nature, vol. 463(7283), pages 906-912, February.
  • Handle: RePEc:nat:nature:v:463:y:2010:i:7283:d:10.1038_nature08765
    DOI: 10.1038/nature08765
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08765
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Afsar & GuanQun Liu & Lijia Jia & Eliza A. Ruben & Digant Nayak & Zuberwasim Sayyad & Priscila dos Santos Bury & Kristin E. Cano & Anindita Nayak & Xiang Ru Zhao & Ankita Shukla & Patrick Sun, 2023. "Cryo-EM structures of Uba7 reveal the molecular basis for ISG15 activation and E1-E2 thioester transfer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Ngoc Truongvan & Shurong Li & Mohit Misra & Monika Kuhn & Hermann Schindelin, 2022. "Structures of UBA6 explain its dual specificity for ubiquitin and FAT10," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lingmin Yuan & Fei Gao & Zongyang Lv & Digant Nayak & Anindita Nayak & Priscila dos Santos Bury & Kristin E. Cano & Lijia Jia & Natalia Oleinik & Firdevs Cansu Atilgan & Besim Ogretmen & Katelyn M. Wi, 2022. "Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:463:y:2010:i:7283:d:10.1038_nature08765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.