IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v463y2010i7280d10.1038_nature08911.html
   My bibliography  Save this article

Chromatin remodelling during development

Author

Listed:
  • Lena Ho

    (Stanford University Medical School, Room B211, Beckman Center)

  • Gerald R. Crabtree

    (Stanford University Medical School, Room B211, Beckman Center)

Abstract

New methods for the genome-wide analysis of chromatin are providing insight into its roles in development and their underlying mechanisms. Current studies indicate that chromatin is dynamic, with its structure and its histone modifications undergoing global changes during transitions in development and in response to extracellular cues. In addition to DNA methylation and histone modification, ATP-dependent enzymes that remodel chromatin are important controllers of chromatin structure and assembly, and are major contributors to the dynamic nature of chromatin. Evidence is emerging that these chromatin-remodelling enzymes have instructive and programmatic roles during development. Particularly intriguing are the findings that specialized assemblies of ATP-dependent remodellers are essential for establishing and maintaining pluripotent and multipotent states in cells.

Suggested Citation

  • Lena Ho & Gerald R. Crabtree, 2010. "Chromatin remodelling during development," Nature, Nature, vol. 463(7280), pages 474-484, January.
  • Handle: RePEc:nat:nature:v:463:y:2010:i:7280:d:10.1038_nature08911
    DOI: 10.1038/nature08911
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08911
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyue Guo & Fengjun Yang & Lijuan Zhu & Leilei Wang & Zhichao Li & Zhenyu Qi & Vasileios Fotopoulos & Jingquan Yu & Jie Zhou, 2024. "Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Yawen Lei & Yaoguang Yu & Wei Fu & Tao Zhu & Caihong Wu & Zhihao Zhang & Zewang Yu & Xin Song & Jianqu Xu & Zhenwei Liang & Peitao Lü & Chenlong Li, 2024. "BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Debashish U. Menon & Oleksandr Kirsanov & Christopher B. Geyer & Terry Magnuson, 2021. "Mammalian SWI/SNF chromatin remodeler is essential for reductional meiosis in males," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Pengfei Guo & Nam Hoang & Joseph Sanchez & Elaine H. Zhang & Keshari Rajawasam & Kristiana Trinidad & Hong Sun & Hui Zhang, 2022. "The assembly of mammalian SWI/SNF chromatin remodeling complexes is regulated by lysine-methylation dependent proteolysis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Gang Ren & Wai Lim Ku & Guangzhe Ge & Jackson A. Hoffman & Jee Youn Kang & Qingsong Tang & Kairong Cui & Yong He & Yukun Guan & Bin Gao & Chengyu Liu & Trevor K. Archer & Keji Zhao, 2024. "Acute depletion of BRG1 reveals its primary function as an activator of transcription," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Erin E. Hahn & Jiri Stiller & Marina R. Alexander & Alicia Grealy & Jennifer M. Taylor & Nicola Jackson & Celine H. Frere & Clare E. Holleley, 2024. "Century-old chromatin architecture revealed in formalin-fixed vertebrates," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jiahui Du & Yili Liu & Jinrui Sun & Enhui Yao & Jingyi Xu & Xiaolin Wu & Ling Xu & Mingliang Zhou & Guangzheng Yang & Xinquan Jiang, 2024. "ARID1A safeguards the canalization of the cell fate decision during osteoclastogenesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Cornelis J. Boogerd & Ilaria Perini & Eirini Kyriakopoulou & Su Ji Han & Phit La & Britt Swaan & Jari B. Berkhout & Danielle Versteeg & Jantine Monshouwer-Kloots & Eva Rooij, 2023. "Cardiomyocyte proliferation is suppressed by ARID1A-mediated YAP inhibition during cardiac maturation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Grigorios Georgolopoulos & Nikoletta Psatha & Mineo Iwata & Andrew Nishida & Tannishtha Som & Minas Yiangou & John A. Stamatoyannopoulos & Jeff Vierstra, 2021. "Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:463:y:2010:i:7280:d:10.1038_nature08911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.