IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v462y2009i7272d10.1038_nature08602.html
   My bibliography  Save this article

Designing materials to direct stem-cell fate

Author

Listed:
  • Matthias P. Lutolf

    (Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne)

  • Penney M. Gilbert

    (Baxter Laboratory in Stem Cell Biology, Institute for Stem Cells and Regenerative Medicine, Stanford University School of Medicine)

  • Helen M. Blau

    (Baxter Laboratory in Stem Cell Biology, Institute for Stem Cells and Regenerative Medicine, Stanford University School of Medicine)

Abstract

Proper tissue function and regeneration rely on robust spatial and temporal control of biophysical and biochemical microenvironmental cues through mechanisms that remain poorly understood. Biomaterials are rapidly being developed to display and deliver stem-cell-regulatory signals in a precise and near-physiological fashion, and serve as powerful artificial microenvironments in which to study and instruct stem-cell fate both in culture and in vivo. Further synergism of cell biological and biomaterials technologies promises to have a profound impact on stem-cell biology and provide insights that will advance stem-cell-based clinical approaches to tissue regeneration.

Suggested Citation

  • Matthias P. Lutolf & Penney M. Gilbert & Helen M. Blau, 2009. "Designing materials to direct stem-cell fate," Nature, Nature, vol. 462(7272), pages 433-441, November.
  • Handle: RePEc:nat:nature:v:462:y:2009:i:7272:d:10.1038_nature08602
    DOI: 10.1038/nature08602
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08602
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanxiong Cao & Jiayi Tan & Haoran Zhao & Ting Deng & Yunxia Hu & Junhong Zeng & Jiawei Li & Yifan Cheng & Jiyuan Tang & Zhiwei Hu & Keer Hu & Bing Xu & Zitian Wang & Yaojiong Wu & Peter E. Lobie & Sh, 2022. "Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Céline Labouesse & Bao Xiu Tan & Chibeza C. Agley & Moritz Hofer & Alexander K. Winkel & Giuliano G. Stirparo & Hannah T. Stuart & Christophe M. Verstreken & Carla Mulas & William Mansfield & Paul Ber, 2021. "StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:462:y:2009:i:7272:d:10.1038_nature08602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.