IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v461y2009i7267d10.1038_nature08513.html
   My bibliography  Save this article

Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge

Author

Listed:
  • Ikuo Katayama

    (Hiroshima University)

  • Ken-ichi Hirauchi

    (Hiroshima University)

  • Katsuyoshi Michibayashi

    (Institute of Geosciences, Shizuoka University)

  • Jun-ichi Ando

    (Hiroshima University)

Abstract

Serpentine deformation in the trenches Although seismic anisotropy in the upper mantle is generally attributed to the crystal-preferred orientation of olivine, the strong trench-parallel anisotropy observed in several subduction systems is difficult to explain in terms of olivine anisotropy, even if the entire mantle wedge were to act as an anisotropic source. Using high-pressure deformation experiments, Ikuo Katayama and colleagues show that the crystal-preferred orientation of serpentine, the main hydrous mineral in the upper mantle, can produce the strong trench-parallel seismic anisotropy observed in such subduction systems.

Suggested Citation

  • Ikuo Katayama & Ken-ichi Hirauchi & Katsuyoshi Michibayashi & Jun-ichi Ando, 2009. "Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge," Nature, Nature, vol. 461(7267), pages 1114-1117, October.
  • Handle: RePEc:nat:nature:v:461:y:2009:i:7267:d:10.1038_nature08513
    DOI: 10.1038/nature08513
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08513
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Hsiang Chien & Enrico Marzotto & Yi-Chi Tsao & Wen-Pin Hsieh, 2024. "Anisotropic thermal conductivity of antigorite along slab subduction impacts seismicity of intermediate-depth earthquakes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:461:y:2009:i:7267:d:10.1038_nature08513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.