IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v458y2009i7238d10.1038_nature07849.html
   My bibliography  Save this article

Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions

Author

Listed:
  • Peter J. Cook

    (Howard Hughes Medical Institute School of Medicine, University of California, San Diego, California 92037, USA
    School of Medicine, University of California, San Diego, California 92093, USA)

  • Bong Gun Ju

    (Howard Hughes Medical Institute School of Medicine, University of California, San Diego, California 92037, USA
    Sogang University)

  • Francesca Telese

    (Howard Hughes Medical Institute School of Medicine, University of California, San Diego, California 92037, USA)

  • Xiangting Wang

    (Howard Hughes Medical Institute School of Medicine, University of California, San Diego, California 92037, USA)

  • Christopher K. Glass

    (School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA)

  • Michael G. Rosenfeld

    (Howard Hughes Medical Institute School of Medicine, University of California, San Diego, California 92037, USA)

Abstract

Life and death fate decisions allow cells to avoid massive apoptotic death in response to genotoxic stress. Although the regulatory mechanisms and signalling pathways controlling DNA repair and apoptosis are well characterized, the precise molecular strategies that determine the ultimate choice of DNA repair and survival or apoptotic cell death remain incompletely understood. Here we report that a protein tyrosine phosphatase, EYA, is involved in promoting efficient DNA repair rather than apoptosis in response to genotoxic stress in mammalian embryonic kidney cells by executing a damage-signal-dependent dephosphorylation of an H2AX carboxy-terminal tyrosine phosphate (Y142). This post-translational modification determines the relative recruitment of either DNA repair or pro-apoptotic factors to the tail of serine phosphorylated histone H2AX (γ-H2AX) and allows it to function as an active determinant of repair/survival versus apoptotic responses to DNA damage, revealing an additional phosphorylation-dependent mechanism that modulates survival/apoptotic decisions during mammalian organogenesis.

Suggested Citation

  • Peter J. Cook & Bong Gun Ju & Francesca Telese & Xiangting Wang & Christopher K. Glass & Michael G. Rosenfeld, 2009. "Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions," Nature, Nature, vol. 458(7238), pages 591-596, April.
  • Handle: RePEc:nat:nature:v:458:y:2009:i:7238:d:10.1038_nature07849
    DOI: 10.1038/nature07849
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07849
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surbhi Chouhan & Dhivya Sridaran & Cody Weimholt & Jingqin Luo & Tiandao Li & Myles C. Hodgson & Luana N. Santos & Samantha Sommer & Bin Fang & John M. Koomen & Markus Seeliger & Cheng-Kui Qu & Armell, 2024. "SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Jessica L. Kelliher & Melissa L. Folkerts & Kaiyuan V. Shen & Wan Song & Kyle Tengler & Clara M. Stiefel & Seong-Ok Lee & Eloise Dray & Weixing Zhao & Brian Koss & Nicholas R. Pannunzio & Justin W. Le, 2024. "Evolved histone tail regulates 53BP1 recruitment at damaged chromatin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:458:y:2009:i:7238:d:10.1038_nature07849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.