Author
Listed:
- Min Zhu
(Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, PO Box 643, Beijing 100044, China)
- Wenjin Zhao
(Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, PO Box 643, Beijing 100044, China)
- Liantao Jia
(Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, PO Box 643, Beijing 100044, China)
- Jing Lu
(Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, PO Box 643, Beijing 100044, China
Graduate School, Chinese Academy of Sciences)
- Tuo Qiao
(Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, PO Box 643, Beijing 100044, China
Graduate School, Chinese Academy of Sciences)
- Qingming Qu
(Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, PO Box 643, Beijing 100044, China
Graduate School, Chinese Academy of Sciences)
Abstract
The evolutionary history of osteichthyans (bony fishes plus tetrapods) extends back to the Ludlow epoch of the Silurian period. However, these Silurian forms have been documented exclusively by fragmentary fossils. Here we report the discovery of an exceptionally preserved primitive fish from the Ludlow of Yunnan, China, that represents the oldest near-complete gnathostome (jawed vertebrate). The postcranial skeleton of this fish includes a primitive pectoral girdle and median fin spine as in non-osteichthyan gnathostomes, but a derived macromeric squamation as in crown osteichthyans, and substantiates the unexpected mix of postcranial features in basal sarcopterygians, previously restored from the disarticulated remains of Psarolepis. As the oldest articulated sarcopterygian, the new taxon offers insights into the origin and early divergence of osteichthyans, and indicates that the minimum date for the actinopterygian–sarcopterygian split was no later than 419 million years ago.
Suggested Citation
Min Zhu & Wenjin Zhao & Liantao Jia & Jing Lu & Tuo Qiao & Qingming Qu, 2009.
"The oldest articulated osteichthyan reveals mosaic gnathostome characters,"
Nature, Nature, vol. 458(7237), pages 469-474, March.
Handle:
RePEc:nat:nature:v:458:y:2009:i:7237:d:10.1038_nature07855
DOI: 10.1038/nature07855
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:458:y:2009:i:7237:d:10.1038_nature07855. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.