IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v457y2009i7231d10.1038_nature07679.html
   My bibliography  Save this article

The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage

Author

Listed:
  • Christophe Lancrin

    (Cancer Research UK Stem Cell Biology Group,)

  • Patrycja Sroczynska

    (Cancer Research UK Stem Cell Biology Group,)

  • Catherine Stephenson

    (Cancer Research UK Stem Cell Biology Group,)

  • Terry Allen

    (Cancer Research UK Structural Cell Biology Group,)

  • Valerie Kouskoff

    (Cancer Research UK Stem Cell Haematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow road, Manchester M20 4BX, UK)

  • Georges Lacaud

    (Cancer Research UK Stem Cell Biology Group,)

Abstract

Blood lines How the blood system forms during embryonic development is a topic of intensive research, in part because of the potential importance of the process for regenerative medicine. Two main theories have emerged to explain the formation of the haematopoietic stem cells that eventually populate the adult born marrow. One idea is that the haematopoietic stem cell and the endothelial lineage arise independently from the mesoderm; the other is that some haematopoietic and endothelial lineages derive from a specialized progenitor called a haemangioblast. Three papers in this issue unify the two theories. Both are correct: the haemangioblast does generate haematopoietic cells, but via a haemogenic endothelium intermediate.

Suggested Citation

  • Christophe Lancrin & Patrycja Sroczynska & Catherine Stephenson & Terry Allen & Valerie Kouskoff & Georges Lacaud, 2009. "The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage," Nature, Nature, vol. 457(7231), pages 892-895, February.
  • Handle: RePEc:nat:nature:v:457:y:2009:i:7231:d:10.1038_nature07679
    DOI: 10.1038/nature07679
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07679
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Hao Neo & Yiran Meng & Alba Rodriguez-Meira & Muhammad Z. H. Fadlullah & Christopher A. G. Booth & Emanuele Azzoni & Supat Thongjuea & Marella F. T. R. Bruijn & Sten Eirik W. Jacobsen & Adam J. Me, 2021. "Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. B. Edginton-White & A. Maytum & S. G. Kellaway & D. K. Goode & P. Keane & I. Pagnuco & S. A. Assi & L. Ames & M. Clarke & P. N. Cockerill & B. Göttgens & J. B. Cazier & C. Bonifer, 2023. "A genome-wide relay of signalling-responsive enhancers drives hematopoietic specification," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. C. Biben & T. S. Weber & K. S. Potts & J. Choi & D. C. Miles & A. Carmagnac & T. Sargeant & C. A. Graaf & K. A. Fennell & A. Farley & O. J. Stonehouse & M. A. Dawson & D. J. Hilton & S. H. Naik & S. T, 2023. "In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Qiang Zhao & Young-Min Han & Ping Song & Zhixue Liu & Zuyi Yuan & Ming-Hui Zou, 2022. "Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:457:y:2009:i:7231:d:10.1038_nature07679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.