IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v456y2008i7223d10.1038_nature07395.html
   My bibliography  Save this article

Strong effect of dispersal network structure on ecological dynamics

Author

Listed:
  • Matthew D. Holland

    (University of California, Davis, One Shields Avenue, Davis, California 95616, USA)

  • Alan Hastings

    (University of California, Davis, One Shields Avenue, Davis, California 95616, USA)

Abstract

Predator versus prey: corridors of uncertainty A central question for ecologists is how interactions between predator and prey affect an ecosystem as a whole. How, for example, is the cyclic dynamics of lemmings and their predators influenced by the predators' taste for lemmings, as opposed to other prey? Using a numerical model, Matthew Holland and Alan Hastings show that by focusing on ecologically relevant interactions — smaller systems in which interactions are strong — it is possible to simulate ecosystems that favour asynchrony of predator and prey cycles, with prolonged transient dynamics, just as ecologists observe in nature. One implication is that corridors linking disconnected habitat fragments should have a degree of asymmetry, mimicking the natural environment.

Suggested Citation

  • Matthew D. Holland & Alan Hastings, 2008. "Strong effect of dispersal network structure on ecological dynamics," Nature, Nature, vol. 456(7223), pages 792-794, December.
  • Handle: RePEc:nat:nature:v:456:y:2008:i:7223:d:10.1038_nature07395
    DOI: 10.1038/nature07395
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07395
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Limei & Shen, Yang & Liao, Jinbao, 2020. "Robustness of dispersal network structure to patch loss," Ecological Modelling, Elsevier, vol. 424(C).
    2. Shen, Yang & Zeng, Chenghui & Nijs, Ivan & Liao, Jinbao, 2019. "Species persistence in spatially regular networks," Ecological Modelling, Elsevier, vol. 406(C), pages 1-6.
    3. Henriette Heer & Lucas Streib & Ralf B Schäfer & Stefan Ruzika, 2020. "Maximising the clustering coefficient of networks and the effects on habitat network robustness," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.
    4. Wang, Jin-Liang & Wu, Huai-Ning, 2011. "Stability analysis of impulsive parabolic complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 1020-1034.
    5. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    6. Grosklos, Guenchik & Zhao, Jia, 2023. "Chaos does not drive lower synchrony for intrinsically-induced population fluctuations," Ecological Modelling, Elsevier, vol. 475(C).
    7. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Bagchi, Dweepabiswa & Arumugam, Ramesh & Chandrasekar, V.K. & Senthilkumar, D.V., 2022. "Metacommunity stability and persistence for predation turnoff in selective patches," Ecological Modelling, Elsevier, vol. 470(C).
    9. Borrett, S.R. & Freeze, M.A., 2011. "Reconnecting environs to their environment," Ecological Modelling, Elsevier, vol. 222(14), pages 2393-2403.
    10. Salau, Kehinde & Schoon, Michael L. & Baggio, Jacopo A. & Janssen, Marco A., 2012. "Varying effects of connectivity and dispersal on interacting species dynamics," Ecological Modelling, Elsevier, vol. 242(C), pages 81-91.
    11. Schreiber, Sebastian J. & Killingback, Timothy P., 2013. "Spatial heterogeneity promotes coexistence of rock–paper–scissors metacommunities," Theoretical Population Biology, Elsevier, vol. 86(C), pages 1-11.
    12. Borrett, S.R. & Salas, A.K., 2010. "Evidence for resource homogenization in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 221(13), pages 1710-1716.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:456:y:2008:i:7223:d:10.1038_nature07395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.