IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v454y2008i7206d10.1038_nature07119.html
   My bibliography  Save this article

On the spontaneous emergence of cell polarity

Author

Listed:
  • Steven J. Altschuler

    (Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA)

  • Sigurd B. Angenent

    (University of Wisconsin, Madison, Wisconsin 53706, USA)

  • Yanqin Wang

    (Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA)

  • Lani F. Wu

    (Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA)

Abstract

Computational cell biology: follow this molecule Many cell types can spontaneously switch from spatial homogeneity to a polarized state — even without external cues. A mathematical model now strips this phenomenon down to its bare bones. Favouring chance recruitment of a given signalling molecule to sites at the cell's membrane where it is already bound — a positive feedback — is sufficient to allow the spontaneous emergence of polarity, provided that the total pool of this molecule is small. When the number of molecules becomes too high, other biological mechanisms such as cytoskeleton-based transport are needed. The model is reminiscent of some population genetics studies and is confirmed experimentally in Cdc42-dependent polarization of yeast cells.

Suggested Citation

  • Steven J. Altschuler & Sigurd B. Angenent & Yanqin Wang & Lani F. Wu, 2008. "On the spontaneous emergence of cell polarity," Nature, Nature, vol. 454(7206), pages 886-889, August.
  • Handle: RePEc:nat:nature:v:454:y:2008:i:7206:d:10.1038_nature07119
    DOI: 10.1038/nature07119
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07119
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Qingyan & Song, Yongli, 2022. "Spatiotemporal pattern formation in a pollen tube model with nonlocal effect and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Fridtjof Brauns & Leila Iñigo de la Cruz & Werner K.-G. Daalman & Ilse Bruin & Jacob Halatek & Liedewij Laan & Erwin Frey, 2023. "Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. James C Schaff & Fei Gao & Ye Li & Igor L Novak & Boris M Slepchenko, 2016. "Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-23, December.
    4. Brian Drawert & Andreas Hellander & Ben Bales & Debjani Banerjee & Giovanni Bellesia & Bernie J Daigle Jr. & Geoffrey Douglas & Mengyuan Gu & Anand Gupta & Stefan Hellander & Chris Horuk & Dibyendu Na, 2016. "Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:454:y:2008:i:7206:d:10.1038_nature07119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.