IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v453y2008i7194d10.1038_nature06971.html
   My bibliography  Save this article

Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures

Author

Listed:
  • Zhucheng Chen

    (Structural Biology Program,
    Cornell University Weill Medical College, New York, New York 10021, USA)

  • Haijuan Yang

    (Structural Biology Program,)

  • Nikola P. Pavletich

    (Structural Biology Program,
    Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA)

Abstract

The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA–ssDNA and RecA–heteroduplex filaments. They show that ssDNA and ATP bind to RecA–RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP γ-phosphate is sensed across the RecA–RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson–Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.

Suggested Citation

  • Zhucheng Chen & Haijuan Yang & Nikola P. Pavletich, 2008. "Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures," Nature, Nature, vol. 453(7194), pages 489-494, May.
  • Handle: RePEc:nat:nature:v:453:y:2008:i:7194:d:10.1038_nature06971
    DOI: 10.1038/nature06971
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06971
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Chi Luo & Min-Chi Yeh & Yu-Hsiang Lien & Hsin-Yi Yeh & Huei-Lun Siao & I-Ping Tu & Peter Chi & Meng-Chiao Ho, 2023. "A RAD51–ADP double filament structure unveils the mechanism of filament dynamics in homologous recombination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Kamal el Battioui & Sohini Chakraborty & András Wacha & Dániel Molnár & Mayra Quemé-Peña & Imola Cs. Szigyártó & Csenge Lilla Szabó & Andrea Bodor & Kata Horváti & Gergő Gyulai & Szilvia Bősze & Judit, 2024. "In situ captured antibacterial action of membrane-incising peptide lamellae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:453:y:2008:i:7194:d:10.1038_nature06971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.