IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v453y2008i7193d10.1038_nature06925.html
   My bibliography  Save this article

Crystal structure of squid rhodopsin

Author

Listed:
  • Midori Murakami

    (Graduate School of Science, Nagoya University)

  • Tsutomu Kouyama

    (Graduate School of Science, Nagoya University
    RIKEN Harima Institute/SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5148, Japan)

Abstract

Invertebrate phototransduction uses an inositol-1,4,5-trisphosphate signalling cascade in which photoactivated rhodopsin stimulates a Gq-type G protein, that is, a class of G protein that stimulates membrane-bound phospholipase Cβ. The same cascade is used by many G-protein-coupled receptors, indicating that invertebrate rhodopsin is a prototypical member. Here we report the crystal structure of squid (Todarodes pacificus) rhodopsin at 2.5 Å resolution. Among seven transmembrane α-helices, helices V and VI extend into the cytoplasmic medium and, together with two cytoplasmic helices, they form a rigid protrusion from the membrane surface. This peculiar structure, which is not seen in bovine rhodopsin, seems to be crucial for the recognition of Gq-type G proteins. The retinal Schiff base forms a hydrogen bond to Asn 87 or Tyr 111; it is far from the putative counterion Glu 180. In the crystal, a tight association is formed between the amino-terminal polypeptides of neighbouring monomers; this intermembrane dimerization may be responsible for the organization of hexagonally packed microvillar membranes in the photoreceptor rhabdom.

Suggested Citation

  • Midori Murakami & Tsutomu Kouyama, 2008. "Crystal structure of squid rhodopsin," Nature, Nature, vol. 453(7193), pages 363-367, May.
  • Handle: RePEc:nat:nature:v:453:y:2008:i:7193:d:10.1038_nature06925
    DOI: 10.1038/nature06925
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06925
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Tejero & Filip Pamula & Mitsumasa Koyanagi & Takashi Nagata & Pavel Afanasyev & Ishita Das & Xavier Deupi & Mordechai Sheves & Akihisa Terakita & Gebhard F. X. Schertler & Matthew J. Rodrigues , 2024. "Active state structures of a bistable visual opsin bound to G proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Marie Mi Bonde & Jonas Tind Hansen & Samra Joke Sanni & Stig Haunsø & Steen Gammeltoft & Christina Lyngsø & Jakob Lerche Hansen, 2010. "Biased Signaling of the Angiotensin II Type 1 Receptor Can Be Mediated through Distinct Mechanisms," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    3. Sebastian Bandholtz & Jörg Wichard & Ronald Kühne & Carsten Grötzinger, 2012. "Molecular Evolution of a Peptide GPCR Ligand Driven by Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-11, May.
    4. Holly J Atkinson & John H Morris & Thomas E Ferrin & Patricia C Babbitt, 2009. "Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:453:y:2008:i:7193:d:10.1038_nature06925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.