IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v447y2007i7145d10.1038_nature05879.html
   My bibliography  Save this article

Developmental reprogramming after chromosome transfer into mitotic mouse zygotes

Author

Listed:
  • Dieter Egli

    (The Stowers Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA)

  • Jacqueline Rosains

    (The Stowers Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA)

  • Garrett Birkhoff

    (The Stowers Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA)

  • Kevin Eggan

    (The Stowers Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA)

Abstract

Until now, animal cloning and the production of embryonic stem cell lines by somatic cell nuclear transfer have relied on introducing nuclei into meiotic oocytes. In contrast, attempts at somatic cell nuclear transfer into fertilized interphase zygotes have failed. As a result, it has generally been assumed that unfertilized human oocytes will be required for the generation of tailored human embryonic stem cell lines from patients by somatic cell nuclear transfer. Here we report, however, that, unlike interphase zygotes, mouse zygotes temporarily arrested in mitosis can support somatic cell reprogramming, the production of embryonic stem cell lines and the full-term development of cloned animals. Thus, human zygotes and perhaps human embryonic blastomeres may be useful supplements to human oocytes for the creation of patient-derived human embryonic stem cells.

Suggested Citation

  • Dieter Egli & Jacqueline Rosains & Garrett Birkhoff & Kevin Eggan, 2007. "Developmental reprogramming after chromosome transfer into mitotic mouse zygotes," Nature, Nature, vol. 447(7145), pages 679-685, June.
  • Handle: RePEc:nat:nature:v:447:y:2007:i:7145:d:10.1038_nature05879
    DOI: 10.1038/nature05879
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05879
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Bae Lee & Luciano Garofano & Aram Ko & Fulvio D’Angelo & Brulinda Frangaj & Danika Sommer & Qiwen Gan & KyeongJin Kim & Timothy Cardozo & Antonio Iavarone & Anna Lasorella, 2022. "Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Tiago C. Luis & Nikolaos Barkas & Joana Carrelha & Alice Giustacchini & Stefania Mazzi & Ruggiero Norfo & Bishan Wu & Affaf Aliouat & Jose A. Guerrero & Alba Rodriguez-Meira & Tiphaine Bouriez-Jones &, 2023. "Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:447:y:2007:i:7145:d:10.1038_nature05879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.