IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v447y2007i7144d10.1038_nature05904.html
   My bibliography  Save this article

Two neurons mediate diet-restriction-induced longevity in C. elegans

Author

Listed:
  • Nicholas A. Bishop

    (Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA)

  • Leonard Guarente

    (Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA)

Abstract

Dietary restriction extends lifespan and retards age-related disease in many species and profoundly alters endocrine function in mammals. However, no causal role of any hormonal signal in diet-restricted longevity has been demonstrated. Here we show that increased longevity of diet-restricted Caenorhabditis elegans requires the transcription factor gene skn-1 acting in the ASIs, a pair of neurons in the head. Dietary restriction activates skn-1 in these two neurons, which signals peripheral tissues to increase metabolic activity. These findings demonstrate that increased lifespan in a diet-restricted metazoan depends on cell non-autonomous signalling from central neuronal cells to non-neuronal body tissues, and suggest that the ASI neurons mediate diet-restriction-induced longevity by an endocrine mechanism.

Suggested Citation

  • Nicholas A. Bishop & Leonard Guarente, 2007. "Two neurons mediate diet-restriction-induced longevity in C. elegans," Nature, Nature, vol. 447(7144), pages 545-549, May.
  • Handle: RePEc:nat:nature:v:447:y:2007:i:7144:d:10.1038_nature05904
    DOI: 10.1038/nature05904
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05904
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hillary A. Miller & Shijiao Huang & Elizabeth S. Dean & Megan L. Schaller & Angela M. Tuckowski & Allyson S. Munneke & Safa Beydoun & Scott D. Pletcher & Scott F. Leiser, 2022. "Serotonin and dopamine modulate aging in response to food odor and availability," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ivan Gusarov & Ilya Shamovsky & Bibhusita Pani & Laurent Gautier & Svetlana Eremina & Olga Katkova-Zhukotskaya & Alexander Mironov & Alexander А. Makarov & Evgeny Nudler, 2021. "Dietary thiols accelerate aging of C. elegans," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:447:y:2007:i:7144:d:10.1038_nature05904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.