IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v445y2007i7126d10.1038_nature05492.html
   My bibliography  Save this article

The APOBEC-2 crystal structure and functional implications for the deaminase AID

Author

Listed:
  • Courtney Prochnow

    (University of Southern California Los Angeles)

  • Ronda Bransteitter

    (University of Southern California Los Angeles)

  • Michael G. Klein

    (University of Southern California Los Angeles)

  • Myron F. Goodman

    (University of Southern California Los Angeles)

  • Xiaojiang S. Chen

    (University of Southern California Los Angeles)

Abstract

APOBEC-2 (APO2) belongs to the family of apolipoprotein B messenger RNA-editing enzyme catalytic (APOBEC) polypeptides, which deaminates mRNA and single-stranded DNA1,2. Different APOBEC members use the same deamination activity to achieve diverse human biological functions. Deamination by an APOBEC protein called activation-induced cytidine deaminase (AID) is critical for generating high-affinity antibodies3, and deamination by APOBEC-3 proteins can inhibit retrotransposons and the replication of retroviruses such as human immunodeficiency virus and hepatitis B virus4,5,6,7. Here we report the crystal structure of APO2. APO2 forms a rod-shaped tetramer that differs markedly from the square-shaped tetramer of the free nucleotide cytidine deaminase, with which APOBEC proteins share considerable sequence homology. In APO2, two long α-helices of a monomer structure prevent the formation of a square-shaped tetramer and facilitate formation of the rod-shaped tetramer via head-to-head interactions of two APO2 dimers. Extensive sequence homology among APOBEC family members allows us to test APO2 structure-based predictions using AID. We show that AID deamination activity is impaired by mutations predicted to interfere with oligomerization and substrate access. The structure suggests how mutations in patients with hyper-IgM-2 syndrome inactivate AID, resulting in defective antibody maturation.

Suggested Citation

  • Courtney Prochnow & Ronda Bransteitter & Michael G. Klein & Myron F. Goodman & Xiaojiang S. Chen, 2007. "The APOBEC-2 crystal structure and functional implications for the deaminase AID," Nature, Nature, vol. 445(7126), pages 447-451, January.
  • Handle: RePEc:nat:nature:v:445:y:2007:i:7126:d:10.1038_nature05492
    DOI: 10.1038/nature05492
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05492
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanjing Yang & Josue Pacheco & Kyumin Kim & Ayub Bokani & Fumiaki Ito & Diako Ebrahimi & Xiaojiang S. Chen, 2024. "Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:445:y:2007:i:7126:d:10.1038_nature05492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.