IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v444y2006i7120d10.1038_nature05312.html
   My bibliography  Save this article

A bacterial dynamin-like protein

Author

Listed:
  • Harry H. Low

    (MRC Laboratory of Molecular Biology)

  • Jan Löwe

    (MRC Laboratory of Molecular Biology)

Abstract

Dynamins form a superfamily of large mechano-chemical GTPases that includes the classical dynamins and dynamin-like proteins (DLPs)1. They are found throughout the Eukarya, functioning in core cellular processes such as endocytosis and organelle division1. Many bacteria are predicted by sequence to possess large GTPases with the same multidomain architecture that is found in DLPs2. Mechanistic dissection of dynamin family members has been impeded by a lack of high-resolution structural data currently restricted to the GTPase3,4 and pleckstrin homology5 domains, and the dynamin-related human guanylate-binding protein6. Here we present the crystal structure of a cyanobacterial DLP in both nucleotide-free and GDP-associated conformation. The bacterial DLP shows dynamin-like qualities, such as helical self-assembly and tubulation of a lipid bilayer. In vivo, it localizes to the membrane in a manner reminiscent of FZL7, a chloroplast-specific dynamin-related protein with which it shares sequence similarity. Our results provide structural and mechanistic insight that may be relevant across the dynamin superfamily. Concurrently, we show compelling similarity between a cyanobacterial and chloroplast DLP that, given the endosymbiotic ancestry of chloroplasts8, questions the evolutionary origins of dynamins.

Suggested Citation

  • Harry H. Low & Jan Löwe, 2006. "A bacterial dynamin-like protein," Nature, Nature, vol. 444(7120), pages 766-769, December.
  • Handle: RePEc:nat:nature:v:444:y:2006:i:7120:d:10.1038_nature05312
    DOI: 10.1038/nature05312
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05312
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Gewehr & Benedikt Junglas & Ruven Jilly & Johannes Franz & Wenyu Eva Zhu & Tobias Weidner & Mischa Bonn & Carsten Sachse & Dirk Schneider, 2023. "SynDLP is a dynamin-like protein of Synechocystis sp. PCC 6803 with eukaryotic features," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:444:y:2006:i:7120:d:10.1038_nature05312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.