IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v444y2006i7119d10.1038_nature05272.html
   My bibliography  Save this article

Protein delivery into eukaryotic cells by type III secretion machines

Author

Listed:
  • Jorge E. Galán

    (Yale University School of Medicine, Boyer Center for Molecular Medicine)

  • Hans Wolf-Watz

    (Umea University)

Abstract

Proteins to go The type III secretion system (T3SS) is a bacterial organelle that delivers bacterial proteins into eukaryotic cells. First identified in pathogens, genome scanning has revealed these machines in many other bacteria that are symbiotic or pathogenic for animals or plants. Jorge Galán and Hans Wolf-Watz review recent work on the mechanism of T3SS action. Its presence in pathogens makes it a possible target for novel antimicrobial strategies, and these machines might also be harnessed to deliver proteins for therapeutic or vaccine purposes.

Suggested Citation

  • Jorge E. Galán & Hans Wolf-Watz, 2006. "Protein delivery into eukaryotic cells by type III secretion machines," Nature, Nature, vol. 444(7119), pages 567-573, November.
  • Handle: RePEc:nat:nature:v:444:y:2006:i:7119:d:10.1038_nature05272
    DOI: 10.1038/nature05272
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05272
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Saleh & Sandra Van Puyvelde & An Staes & Evy Timmerman & Barbara Barbé & Jan Jacobs & Kris Gevaert & Stijn Deborggraeve, 2019. "Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(5), pages 1-16, May.
    2. Yejun Wang & Ming'an Sun & Hongxia Bao & Aaron P White, 2013. "T3_MM: A Markov Model Effectively Classifies Bacterial Type III Secretion Signals," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-12, March.
    3. Lisa M Schechter & Joy C Valenta & David J Schneider & Alan Collmer & Eric Sakk, 2012. "Functional and Computational Analysis of Amino Acid Patterns Predictive of Type III Secretion System Substrates in Pseudomonas syringae," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-13, April.
    4. Shiyang Cao & Tong Wang & Yifan Ren & Gengshan Wu & Yuan Zhang & Yafang Tan & Yazhou Zhou & Hongyan Chen & Yu Zhang & Yajun Song & Ruifu Yang & Zongmin Du, 2024. "A protein O-GlcNAc glycosyltransferase regulates the antioxidative response in Yersinia pestis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Vishnu Raman & Nele Van Dessel & Christopher L. Hall & Victoria E. Wetherby & Samantha A. Whitney & Emily L. Kolewe & Shoshana M. K. Bloom & Abhinav Sharma & Jeanne A. Hardy & Mathieu Bollen & Aleyde , 2021. "Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:444:y:2006:i:7119:d:10.1038_nature05272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.