IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v444y2006i7116d10.1038_nature05280.html
   My bibliography  Save this article

A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling

Author

Listed:
  • Adam Friedman

    (Howard Hughes Medical Institute, Harvard Medical School)

  • Norbert Perrimon

    (Howard Hughes Medical Institute, Harvard Medical School)

Abstract

Receptor tyrosine kinase (RTK) signalling through extracellular-signal-regulated kinases (ERKs) has pivotal roles during metazoan development, underlying processes as diverse as fate determination, differentiation, proliferation, survival, migration and growth. Abnormal RTK/ERK signalling has been extensively documented to contribute to developmental disorders and disease, most notably in oncogenic transformation by mutant RTKs1 or downstream pathway components such as Ras and Raf2. Although the core RTK/ERK signalling cassette has been characterized by decades of research using mammalian cell culture and forward genetic screens in model organisms, signal propagation through this pathway is probably regulated by a larger network of moderate, context-specific proteins. The genes encoding these proteins may not have been discovered through traditional screens owing, in particular, to the requirement for visible phenotypes. To obtain a global view of RTK/ERK signalling, we performed an unbiased, RNA interference (RNAi), genome-wide, high-throughput screen in Drosophila cells using a novel, quantitative, cellular assay monitoring ERK activation. Here we show that ERK pathway output integrates a wide array of conserved cellular processes. Further analysis of selected components—in multiple cell types with different RTK ligands and oncogenic stimuli—validates and classifies 331 pathway regulators. The relevance of these genes is highlighted by our isolation of a Ste20-like kinase and a PPM-family phosphatase that seem to regulate RTK/ERK signalling in vivo and in mammalian cells. Novel regulators that modulate specific pathway outputs may be selective targets for drug discovery.

Suggested Citation

  • Adam Friedman & Norbert Perrimon, 2006. "A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling," Nature, Nature, vol. 444(7116), pages 230-234, November.
  • Handle: RePEc:nat:nature:v:444:y:2006:i:7116:d:10.1038_nature05280
    DOI: 10.1038/nature05280
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05280
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bettina Knapp & Lars Kaderali, 2013. "Reconstruction of Cellular Signal Transduction Networks Using Perturbation Assays and Linear Programming," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:444:y:2006:i:7116:d:10.1038_nature05280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.