IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v442y2006i7106d10.1038_nature05025.html
   My bibliography  Save this article

Dynamics of heat shock factor association with native gene loci in living cells

Author

Listed:
  • Jie Yao

    (Field of Biochemistry, Molecular and Cell Biology
    School of Applied and Engineering Physics)

  • Katherine M. Munson

    (Cornell University)

  • Watt W. Webb

    (Field of Biochemistry, Molecular and Cell Biology
    School of Applied and Engineering Physics)

  • John T. Lis

    (Field of Biochemistry, Molecular and Cell Biology
    Cornell University)

Abstract

Direct observation of transcription factor action in the living cell nucleus can provide important insights into gene regulatory mechanisms1,2. Live-cell imaging techniques have enabled the visualization of a variety of intranuclear activities, from chromosome dynamics3 to gene expression4. However, progress in studying transcription regulation of specific native genes has been limited, primarily as a result of difficulties in resolving individual gene loci and in detecting the small number of protein molecules functioning within active transcription units. Here we report that multiphoton microscopy imaging5 of polytene nuclei in living Drosophila salivary glands allows real-time analysis of transcription factor recruitment and exchange on specific native genes. After heat shock, we have visualized the recruitment of RNA polymerase II (Pol II) to native hsp70 gene loci 87A and 87C in real time. We show that heat shock factor (HSF), the transcription activator of hsp70, is localized to the nucleus before heat shock and translocates from nucleoplasm to chromosomal loci after heat shock. Assays based on fluorescence recovery after photobleaching6 show a rapid exchange of HSF at chromosomal loci under non-heat-shock conditions but a very slow exchange after heat shock. However, this is not a consequence of a change of HSF diffusibility, as shown here directly by fluorescence correlation spectroscopy7. Our results provide strong evidence that activated HSF is stably bound to DNA in vivo and that turnover or disassembly of transcription activator is not required for rounds of hsp70 transcription. This and previous studies8,9 indicate that transcription activators display diverse dynamic behaviours in their associations with targeted loci in living cells. Our method can be applied to study the dynamics of many factors involved in transcription and RNA processing, and in their regulation at native heat shock genes in vivo.

Suggested Citation

  • Jie Yao & Katherine M. Munson & Watt W. Webb & John T. Lis, 2006. "Dynamics of heat shock factor association with native gene loci in living cells," Nature, Nature, vol. 442(7106), pages 1050-1053, August.
  • Handle: RePEc:nat:nature:v:442:y:2006:i:7106:d:10.1038_nature05025
    DOI: 10.1038/nature05025
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05025
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael DeBerardine & Gregory T. Booth & Philip P. Versluis & John T. Lis, 2023. "The NELF pausing checkpoint mediates the functional divergence of Cdk9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:442:y:2006:i:7106:d:10.1038_nature05025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.