IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v440y2006i7081d10.1038_nature04535.html
   My bibliography  Save this article

ClC-7 requires Ostm1 as a β-subunit to support bone resorption and lysosomal function

Author

Listed:
  • Philipp F. Lange

    (Universität Hamburg)

  • Lena Wartosch

    (Universität Hamburg)

  • Thomas J. Jentsch

    (Universität Hamburg)

  • Jens C. Fuhrmann

    (Universität Hamburg)

Abstract

Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters1,2, cause osteopetrosis3 and lysosomal storage disease4 in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function5. Here we show that both ClC-7 and Ostm1 proteins co-localize in late endosomes and lysosomes of various tissues, as well as in the ruffled border of bone-resorbing osteoclasts. Co-immunoprecipitations show that ClC-7 and Ostm1 form a molecular complex and suggest that Ostm1 is a β–subunit of ClC-7. ClC-7 is required for Ostm1 to reach lysosomes, where the highly glycosylated Ostm1 luminal domain is cleaved. Protein but not RNA levels of ClC-7 are greatly reduced in grey-lethal mice, which lack Ostm1, suggesting that the ClC-7–Ostm1 interaction is important for protein stability. As ClC-7 protein levels in Ostm1-deficient tissues and cells, including osteoclasts, are decreased below 10% of normal levels, Ostm1 mutations probably cause osteopetrosis by impairing the acidification of the osteoclast resorption lacuna, which depends on ClC-7 (ref. 3). The finding that grey-lethal mice, just like ClC-7-deficient mice4, show lysosomal storage and neurodegeneration in addition to osteopetrosis implies a more general importance for ClC-7–Ostm1 complexes.

Suggested Citation

  • Philipp F. Lange & Lena Wartosch & Thomas J. Jentsch & Jens C. Fuhrmann, 2006. "ClC-7 requires Ostm1 as a β-subunit to support bone resorption and lysosomal function," Nature, Nature, vol. 440(7081), pages 220-223, March.
  • Handle: RePEc:nat:nature:v:440:y:2006:i:7081:d:10.1038_nature04535
    DOI: 10.1038/nature04535
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04535
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsubasa Tanaka & Tamaki Yano & Shingo Usuki & Yoko Seo & Kento Mizuta & Maho Okaguchi & Maki Yamaguchi & Kazuko Hanyu-Nakamura & Noriko Toyama-Sorimachi & Katja Brückner & Akira Nakamura, 2024. "Endocytosed dsRNAs induce lysosomal membrane permeabilization that allows cytosolic dsRNA translocation for Drosophila RNAi responses," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:440:y:2006:i:7081:d:10.1038_nature04535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.