IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v440y2006i7080d10.1038_nature04520.html
   My bibliography  Save this article

Development of the signal in sensory rhodopsin and its transfer to the cognate transducer

Author

Listed:
  • Rouslan Moukhametzianov

    (Institute of Structural Biology (IBI-2)
    Centre for Biophysics and Physical Chemistry of Supramolecular Structure, MIPT)

  • Johann P. Klare

    (Max Planck Institute for Molecular Physiology)

  • Rouslan Efremov

    (Institute of Structural Biology (IBI-2)
    Centre for Biophysics and Physical Chemistry of Supramolecular Structure, MIPT)

  • Christian Baeken

    (Institute of Structural Biology (IBI-2))

  • Annika Göppner

    (Max Planck Institute for Molecular Physiology)

  • Jörg Labahn

    (Institute of Structural Biology (IBI-2))

  • Martin Engelhard

    (Max Planck Institute for Molecular Physiology)

  • Georg Büldt

    (Institute of Structural Biology (IBI-2))

  • Valentin I. Gordeliy

    (Institute of Structural Biology (IBI-2)
    Centre for Biophysics and Physical Chemistry of Supramolecular Structure, MIPT)

Abstract

The microbial phototaxis receptor sensory rhodopsin II (NpSRII, also named phoborhodopsin) mediates the photophobic response of the haloarchaeon Natronomonas pharaonis1,2 by modulating the swimming behaviour of the bacterium3. After excitation by blue-green light NpSRII triggers, by means of a tightly bound transducer protein (NpHtrII), a signal transduction chain homologous with the two-component system of eubacterial chemotaxis4. Two molecules of NpSRII and two molecules of NpHtrII form a 2:2 complex in membranes as shown by electron paramagnetic resonance5 and X-ray structure analysis6. Here we present X-ray structures of the photocycle intermediates K and late M (M2) explaining the evolution of the signal in the receptor after retinal isomerization and the transfer of the signal to the transducer in the complex. The formation of late M has been correlated with the formation of the signalling state2,7. The observed structural rearrangements allow us to propose the following mechanism for the light-induced activation of the signalling complex. On excitation by light, retinal isomerization leads in the K state to a rearrangement of a water cluster that partly disconnects two helices of the receptor. In the transition to late M the changes in the hydrogen bond network proceed further. Thus, in late M state an altered tertiary structure establishes the signalling state of the receptor. The transducer responds to the activation of the receptor by a clockwise rotation of about 15° of helix TM2 and a displacement of this helix by 0.9 Å at the cytoplasmic surface.

Suggested Citation

  • Rouslan Moukhametzianov & Johann P. Klare & Rouslan Efremov & Christian Baeken & Annika Göppner & Jörg Labahn & Martin Engelhard & Georg Büldt & Valentin I. Gordeliy, 2006. "Development of the signal in sensory rhodopsin and its transfer to the cognate transducer," Nature, Nature, vol. 440(7080), pages 115-119, March.
  • Handle: RePEc:nat:nature:v:440:y:2006:i:7080:d:10.1038_nature04520
    DOI: 10.1038/nature04520
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04520
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natasha L. George & Benjamin J. Orlando, 2023. "Architecture of a complete Bce-type antimicrobial peptide resistance module," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Mengke Li & Hongzhi Tang & Rui Qing & Yanze Wang & Jiongqin Liu & Rui Wang & Shan Lyu & Lina Ma & Ping Xu & Shuguang Zhang & Fei Tao, 2024. "Design of a water-soluble transmembrane receptor kinase with intact molecular function by QTY code," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Mattia L DiFrancesco & Ulf-Peter Hansen & Gerhard Thiel & Anna Moroni & Indra Schroeder, 2014. "Effect of Cytosolic pH on Inward Currents Reveals Structural Characteristics of the Proton Transport Cycle in the Influenza A Protein M2 in Cell-Free Membrane Patches of Xenopus oocytes," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:440:y:2006:i:7080:d:10.1038_nature04520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.