IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v439y2006i7077d10.1038_nature04506.html
   My bibliography  Save this article

Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet

Author

Listed:
  • David B. Rowley

    (The University of Chicago)

  • Brian S. Currie

    (Miami University)

Abstract

The elevation history of the Tibetan plateau provides direct insight into the tectonic processes associated with continent–continent collisions. Here we present oxygen-isotope-based estimates of the palaeo-altimetry of late Eocene and younger deposits of the Lunpola basin in the centre of the plateau, which indicate that the surface of Tibet has been at an elevation of more than 4 kilometres for at least the past 35 million years. We conclude that crustal, but not mantle, thickening models, combined with plate-kinematic solutions of India–Asia convergence, are compatible with palaeo-elevation estimates across the Tibetan plateau.

Suggested Citation

  • David B. Rowley & Brian S. Currie, 2006. "Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet," Nature, Nature, vol. 439(7077), pages 677-681, February.
  • Handle: RePEc:nat:nature:v:439:y:2006:i:7077:d:10.1038_nature04506
    DOI: 10.1038/nature04506
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04506
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinwen Zhang & Uriel Gélin & Robert A. Spicer & Feixiang Wu & Alexander Farnsworth & Peirong Chen & Cédric Del Rio & Shufeng Li & Jia Liu & Jian Huang & Teresa E. V. Spicer & Kyle W. Tomlinson & Paul , 2022. "Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Zhaowei Jing & Wusheng Yu & Stephen Lewis & Lonnie G. Thompson & Jie Xu & Jingyi Zhang & Baiqing Xu & Guangjian Wu & Yaoming Ma & Yong Wang & Rong Guo, 2022. "Inverse altitude effect disputes the theoretical foundation of stable isotope paleoaltimetry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:439:y:2006:i:7077:d:10.1038_nature04506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.