IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v438y2005i7070d10.1038_nature04482.html
   My bibliography  Save this article

Retinal angiogenesis in development and disease

Author

Listed:
  • Ray F. Gariano

    (Stanford University School of Medicine)

  • Thomas W. Gardner

    (Penn State College of Medicine)

Abstract

The retina has long been regarded as ‘an approachable part of the brain’ for investigating neurosensory processes. Cell biologists are now capitalizing on the accessibility of the retina to investigate important aspects of developmental angiogenesis, including how it relates to neuronal and glial development, morphogenesis, oxygen sensing and progenitor cells. Pathological angiogenesis also occurs in the retina and is a major feature of leading blinding diseases, particularly diabetic retinopathy. The retina and its clinical disorders have a pivotal role in angiogenesis research and provide model systems in which to investigate neurovascular relationships and angiogenic diseases.

Suggested Citation

  • Ray F. Gariano & Thomas W. Gardner, 2005. "Retinal angiogenesis in development and disease," Nature, Nature, vol. 438(7070), pages 960-966, December.
  • Handle: RePEc:nat:nature:v:438:y:2005:i:7070:d:10.1038_nature04482
    DOI: 10.1038/nature04482
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04482
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara G. Romeo & Ilaria Secco & Edoardo Schneider & Christina M. Reumiller & Celio X. C. Santos & Anna Zoccarato & Vishal Musale & Aman Pooni & Xiaoke Yin & Konstantinos Theofilatos & Silvia Cellone Tr, 2023. "Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:438:y:2005:i:7070:d:10.1038_nature04482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.