IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v438y2005i7066d10.1038_nature04118.html
   My bibliography  Save this article

A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome

Author

Listed:
  • Jeremiah R. Wagner

    (Department of Genetics)

  • Joseph S. Brunzelle

    (Northwestern University)

  • Katrina T. Forest

    (University of Wisconsin-Madison)

  • Richard D. Vierstra

    (Department of Genetics)

Abstract

Phytochromes are red/far-red light photoreceptors that direct photosensory responses across the bacterial, fungal and plant kingdoms. These include photosynthetic potential and pigmentation in bacteria as well as chloroplast development and photomorphogenesis in plants. Phytochromes consist of an amino-terminal region that covalently binds a single bilin chromophore, followed by a carboxy-terminal dimerization domain that often transmits the light signal through a histidine kinase relay. Here we describe the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans phytochrome assembled with its chromophore biliverdin in the Pr ground state. Our model, refined to 2.5 Å resolution, reaffirms Cys 24 as the chromophore attachment site, locates key amino acids that form a solvent-shielded bilin-binding pocket, and reveals an unusually formed deep trefoil knot that stabilizes this region. The structure provides the first three-dimensional glimpse into the photochromic behaviour of these photoreceptors and helps to explain the evolution of higher plant phytochromes from prokaryotic precursors.

Suggested Citation

  • Jeremiah R. Wagner & Joseph S. Brunzelle & Katrina T. Forest & Richard D. Vierstra, 2005. "A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome," Nature, Nature, vol. 438(7066), pages 325-331, November.
  • Handle: RePEc:nat:nature:v:438:y:2005:i:7066:d:10.1038_nature04118
    DOI: 10.1038/nature04118
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04118
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weixiao Yuan Wahlgren & Elin Claesson & Iida Tuure & Sergio Trillo-Muyo & Szabolcs Bódizs & Janne A. Ihalainen & Heikki Takala & Sebastian Westenhoff, 2022. "Structural mechanism of signal transduction in a phytochrome histidine kinase," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Derren J Heyes & Basile Khara & Michiyo Sakuma & Samantha J O Hardman & Ronan O'Cualain & Stephen E J Rigby & Nigel S Scrutton, 2012. "Ultrafast Red Light Activation of Synechocystis Phytochrome Cph1 Triggers Major Structural Change to Form the Pfr Signalling-Competent State," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    3. Giacomo Salvadori & Veronica Macaluso & Giulia Pellicci & Lorenzo Cupellini & Giovanni Granucci & Benedetta Mennucci, 2022. "Protein control of photochemistry and transient intermediates in phytochromes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:438:y:2005:i:7066:d:10.1038_nature04118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.